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Preface

In the fall semester of 1979 I gave a course on deformation theory at Berkeley.
My goal was to understand completely Grothendieck’s local study of the
Hilbert scheme using the cohomology of the normal bundle to characterize
the Zariski tangent space and the obstructions to deformations. At the same
time I started writing lecture notes for the course. However, the writing project
soon foundered as the subject became more intricate, and the result was no
more than five of a projected thirteen sections, corresponding roughly to sec-
tions 1, 2, 3, 5, 6 of the present book.

These handwritten notes circulated quietly for many years until David
Eisenbud urged me to complete them and at the same time (without consult-
ing me) mentioned to an editor at Springer, “You know Robin has these notes
on deformation theory, which could easily become a book.” When asked by
Springer if I would write such a book, I immediately refused, since I was then
planning another book on space curves. But on second thought, I decided this
was, after all, a worthy project, and that by writing I might finally understand
the subject myself.

So during 2004 I expanded the old notes into a rough draft, which I used
to teach a course during the spring semester of 2005. Those notes, rewritten
once more, with the addition of exercises, form the book you are now reading.

My goal in this book is to introduce the main ideas of deformation theory in
algebraic geometry and to illustrate their use in a number of typical situations.
I have made no effort to state results in the most general form, since I preferred
to let the basic ideas shine forth unencumbered by technical details. Nor have
I attempted to phrase results in the current “state of the art” language of
stacks, since that requires a formidable apparatus of category theory. I hope
that my elementary approach will be useful as a preparation for the new
language in the same way that a thorough study of varieties is a good basis
for understanding schemes and cohomology.

The prerequisite for reading this book is a basic familiarity with algebraic
geometry as developed for example in [57].



Introduction

Deformation theory is the local study of deformations. Or, seen from another
point of view, it is the infinitesimal study of a family in the neighborhood
of a given element. A typical situation would be a flat morphism of schemes
f : X → T . For varying t ∈ T we regard the fibers Xt as a family of schemes.
Deformation theory is the infinitesimal study of the family in the neighbor-
hood of a special fiber X0.

Closely connected with deformation theory is the question of existence of
varieties of moduli. Suppose we try to classify some set of objects, such as
curves of genus g. Not only do we want to describe the set of isomorphism
classes of curves as a set, but also we wish to describe families of curves.
So we seek a universal family of curves, parametrized by a variety of moduli
M , such that each isomorphism class of curves occurs exactly once in the
family. Deformation theory would then help us infer properties of the variety
of moduli M in the neighborhood of a point 0 ∈M by studying deformations
of the corresponding curve X0. Even if the variety of moduli does not exist,
deformation theory can be useful for the classification problem.

The purpose of this book is to establish the basic techniques of deformation
theory, to see how they work in various standard situations, and to give some
interesting examples and applications from the literature.

We will focus our attention on four standard situations.

Situation A. Subschemes of a fixed scheme X. The problem in this case is
to deform the subschemes while keeping the ambient scheme fixed.

Situation B. Line bundles on a fixed scheme X.

Situation C. Vector bundles, or more generally coherent sheaves, on a fixed
scheme X.

Situation D. Deformations of abstract schemes. This includes the local study
of deformations of singularities, and the global study of deformations of non-
singular varieties.

R. Hartshorne, Deformation Theory, Graduate Texts in Mathematics 257, 1
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2 Introduction

For each of these situations, we will consider a number of different ques-
tions. The ultimate goal is to have a global parameter space that classifies
isomorphism classes of the objects in question. For example, in Situation A
there is the Hilbert scheme, and in Situation D there is the variety of moduli of
curves. In this book we will not prove the existence of these global parameter
spaces. Our goal is rather to lay the foundations of the deformation theory
that provides insight into the local structure of the global parameter space.

We start in Chapter 1 with deformations over the ring of dual numbers,
which one can call first-order infinitesimal deformations. For Situations A, B,
C, we can do this using the usual cohomology of coherent sheaves and the
Ext groups. For Situation D we need something more, and for this purpose
we introduce the cotangent complex and the T i functors of Lichtenbaum and
Schlessinger. Along the way, we see that nonsingular varieties play a special
role, since their local deformations are all trivial. We show how they satisfy an
infinitesimal lifting property, and that they are characterized by the vanishing
of the T 1 functors. In any of our situations, when a good moduli space exists,
the deformations over the dual numbers studied in this chapter will allow us
to compute the Zariski tangent space to the moduli space.

In Chapter 2 we study higher-order deformations. The problem here is still
infinitesimal: given a deformation over a local Artin ring A, can one extend it
to a larger Artin ring A′, and if so in how many ways? In general this is not
always possible, and there is a corresponding obstruction theory. In the case
of a good moduli space, the vanishing of the obstructions will imply that the
moduli space is smooth. We show how this works for each of the four standard
situations. In Situation A, we also describe several classes of subschemes for
which there are no local obstructions, namely Cohen–Macaulay subschemes in
codimension 2, Gorenstein subschemes in codimension 3, and locally complete
intersection subschemes of any codimension. The obstruction theory allows us
to give a bound on the dimension of the local rings of the parameter space, and
we apply this to prove the classical result that the Hilbert scheme of curves of
degree d in P

3 has dimension at least 4d in every component. We then give as
an application Mumford’s example of a nonreduced component of the Hilbert
scheme of nonsingular curves in P

3.
Passing to the limit over larger and larger Artin rings gives rise to the

notion of formal deformations, which we study in Chapter 3. Some situations
are better than others. In the best possible case we get a formal deformation
that accurately encodes all possible infinitesimal deformations, in which case
we have a pro-representable functor of Artin rings. We give Schlessinger’s cri-
terion for pro-representability and show how it applies to each situation. If the
functor is not pro-representable, there are the weaker notions of miniversal
and versal families of deformations. As an example of the formal theory, we
study the question of lifting varieties from characteristic p to characteristic 0
and give Serre’s example of a nonliftable 3-fold.

To go from a formal family defined over a complete local ring to an alge-
braic family defined over a ring of finite type over the base, there is a theory of
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algebraizability due to Artin. We will mention this briefly, but without proofs,
because to develop this theory fully would carry us too far afield.

In Chapter 4 we discuss global moduli questions. We introduce the
language of functors and talk about a fine moduli space (corresponding to
a representable functor) or a coarse moduli space. We describe various pro-
perties that are useful to test whether a functor is representable, though there
is no satisfactory criterion (as there was in the case of the functors of Artin
rings in Chapter 3) to determine whether a functor is representable. We illus-
trate these concepts in a number of cases: the Hilbert scheme for Situation A,
the Picard scheme for Situation B, and the variety of moduli of stable vector
bundles for Situation C. For Situation D, we describe in detail the moduli
question for rational curves and elliptic curves. For curves of genus ≥ 2, we
describe the modular families of Mumford, which help explain the functor
of deformations of curves in the absence of a fine moduli space. As applica-
tions of the general theory we give Mori’s theorem on the existence of rational
curves in a nonsingular variety in characteristic p whose canonical divisor is
not numerically effective. In a final section we study the question of smooth-
ing singularities. We introduce the infinitesimal notion of formally smoothable
scheme and use this to give examples of nonsmoothable singularities.

As the reader is probably aware, one of the big problems with global
deformation questions is that the associated functor is not always repre-
sentable by a scheme. This has led to various efforts to enlarge the category of
schemes so that the functors will be representable, for example, by using the
algebraic spaces of Artin and Knutson. More recently, the most promising way
of dealing with global moduli questions seems to be with the theory of stacks,
introduced by Deligne and Mumford. The reader may wonder why I say so
little about stacks in this book. Two reasons are (a) it would take another
whole book to do justice to the subject, and (b) I am not competent to write
that book. I hope, however, that the present book will do a reasonable job of
explaining deformation theory up to, but not including, the theory of stacks.
And I believe that the material presented here, both by its successes and its
failures, will provide good motivation for the study of stacks.

Perhaps I should also say what is not in this book. I do not include a proof
of the existence of the Hilbert scheme, though I make frequent use of it in
examples and proofs of other results. I do not discuss the geometric invariant
theory of Mumford, and hence do not prove the existence of the coarse moduli
schemes for curves and for stable vector bundles. I do not prove or make any
use of Artin’s approximation theorems. There are no simplicial complexes, no
fibered categories, no differential graded algebras, and no derived categories.
I preferred in each case to see how far one can go with elementary methods,
even though some results could be sharpened and some proofs simplified by
bringing in the big guns.

Finally, a remark on the generality of hypotheses. I will often state a result
in a restricted situation to bring forth more clearly its essence. Later in the
book, I may break one of the rules of mathematical exposition by applying
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it in a context wider than originally stated. I felt it necessary to make this
compromise, since to state results in their most general formulation from the
outset would make the book unreadable. For example, I usually assume that
the ground field is algebraically closed, though that may not be necessary, so
that there is one less thing to worry about. I am confident that the reader will
have no difficulty disengaging the more general context in which the result
may be true.

The book is divided into four chapters and twenty-nine sections. Cross-
references to results in the main text are given by section and an internal
number, e.g., (16.2), a theorem, or (29.10.3), an example. References to the
exercises, which have additional results and examples, are preceded by Ex,
e.g., (Ex. 5.8). References to the bibliography are in square brackets, e.g.,
[21].

I would like to thank all those people who have helped me in the prepa-
ration of this book, teachers, colleagues, and students: those who explained
subtle points to me; those who answered my questions and provided refer-
ences; those who asked questions prodding me to deeper understanding; and
those who read parts of the manuscript and made valuable comments. If I were
to begin to list your names, it would be a very long list and I would surely
forget some, so I had better just say, thank you all, you know who you are.

I have done my best to state only true theorems and give only correct
proofs, but in spite of all the help I have received, I am sure there are still
some errors to challenge the careful reader. Please let me know when you find
them.



1

First-Order Deformations

We start by introducing the Hilbert scheme, which will be a model for the
other situations, and which will provide us with examples as we go along. Then
in Section 2 we discuss deformations over the dual numbers for Situations A, B,
and C. In Section 3 we introduce the cotangent complex and the T i functors,
which are needed to discuss deformations of abstract schemes (Situation D)
in Section 5. In Section 4 we examine the special role of nonsingular varieties,
using the infinitesimal lifting property and the T i functors. We also show that
the relative notion of a smooth morphism is characterized by the vanishing of
the relative T 1 functors.

1. The Hilbert Scheme

As motivation for all the local study of deformations we are about to embark
on, we will introduce the Hilbert scheme of Grothendieck, as a typical example
of the goals of this work. The Hilbert scheme gives a particularly satisfactory
answer to the problem of describing families of closed subschemes of a given
scheme. In fact, when I first lectured on this subject and wrote some pre-
liminary notes that have grown into this book, my goal was to understand
completely the proof of the following theorem.

Theorem 1.1. Let Y be a closed subscheme of the projective space X = P
n
k

over a field k. Then

(a) There exists a projective scheme H, called the Hilbert scheme, parametriz-
ing closed subschemes of X with the same Hilbert polynomial P as Y , and
there exists a universal subscheme W ⊆ X × H, flat over H, such that
the fibers of W over closed points h ∈ H are all closed subschemes of X
with the same Hilbert polynomial P . Furthermore, H is universal in the
sense that if T is any other scheme, if W ′ ⊆ X×T is a closed subscheme,
flat over T , all of whose fibers are subschemes of X with the same Hilbert

R. Hartshorne, Deformation Theory, Graduate Texts in Mathematics 257, 5
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6 1 First-Order Deformations

polynomial P , then there exists a unique morphism ϕ : T → H such that
W ′ = W ×H T as subschemes of X × T .

(b)The Zariski tangent space to H at the point y ∈ H corresponding to Y is
given by H0(Y,N ), where N is the normal sheaf of Y in X.

(c) If Y is a locally complete intersection, and if H1(Y,N ) = 0, then H is non-
singular at the point y, of dimension equal to h0(Y,N ) = dimk H

0(Y,N ).
(d) In any case, if Y is a locally complete intersection, the dimension of H at

y is at least h0(Y,N )− h1(Y,N ).

Parts (a), (b), (c) of this theorem are due to Grothendieck [45]. For part
(d) there are recent proofs due to Laudal [92] and Mori [109]. I do not know
whether there is an earlier reference.

Since the main purpose of this book is to study the local theory, we will
not prove the existence (a) of the Hilbert scheme. The proof of existence uses
techniques quite different from those we consider here, and is not necessary
for the comprehension of anything in this book. The reader who wishes to see
a proof can consult any of many sources [45, exposé 221], [115], [151], [161],
[152]. Parts (b), (c), (d) of the theorem will be proved in §2, §9, and §11,
respectively.

Parts (b), (c), (d) of this theorem illustrate the benefit derived from
Grothendieck’s insistence on the systematic use of nilpotent elements. Let
D = k[t]/t2 be the ring of dual numbers. Taking D as our parameter scheme,
we see from the universal property (a) that flat families Y ′ ⊆ X × D with
closed fiber Y are in one-to-one correspondence with morphisms of schemes
SpecD → H that send the unique point to y. This set Homy(D,H) in turn
can be interpreted as the Zariski tangent space to H at y [57, II, Ex. 2.8]. Thus
to prove (b) of the theorem, we have only to classify schemes Y ′ ⊆ X × D,
flat over D, whose closed fiber is Y , which we will do in §2.

Part (c) of the theorem is related to obstruction theory. Given an infinit-
esimal deformation defined over an Artin ring A, to extend the deformation
over a larger Artin ring there is usually some obstruction, whose vanishing
is necessary and sufficient for the existence of an extended deformation. For
closed subschemes with no local obstructions, such as locally complete inter-
section subschemes, the obstructions lie in H1(Y,N ). If that group is zero,
there are no obstructions, and the corresponding moduli space is nonsingular.
The dimension estimate (d) comes out of obstruction theory.

Exercises.

1.1. Curves in P
2

P
2

P
2. Here we will verify the existence of the Hilbert scheme for

curves in P
2. Over an algebraically closed field k, we define a curve in P

2
k to be the

closed subscheme defined by a homogeneous polynomial f(x, y, z) of degree d in the
coordinate ring S = k[x, y, z]. We can write f as a0x

d + · · · + anz
d, ai ∈ k, with

n =
(
d+2
2

)
− 1 since f has that many terms. Consider (a0, . . . , an) as a point in P

n
k .

(a) Show that curves of degree d in P
2 are in a one-to-one correspondence with

points of P
n by this correspondence.
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(b) Define C ⊆ P
2 × P

n by the equation f = a0x
d + · · · + anz

d above, where the
x, y, z are coordinates on P

2 and a0, . . . , an are coordinates on P
n. Show that

the correspondence of (a) is given by a ∈ P
n goes to the fiber Ca ⊆ P

2 over the
point a. Therefore we call C a tautological family.

(c) For any finitely generated k-algebra A, we define a family of curves of degree d
in P

2 over A to be a closed subscheme X ⊆ P
2
A, flat over A, whose fibers above

closed points of SpecA are curves in P
2. Show that the ideal IX ⊆ A[x, y, z] is

generated by a single homogeneous polynomial f of degree d in A[x, y, z].
(d) Conversely, if f ∈ A[x, y, z] is homogeneous of degree d, what is the condition

on f for the zero-scheme X defined by f to be flat over A? (Do not assume A
reduced.)

(e) Show that the family C is universal in the sense that for any family X ⊆ P
2
A as

in c), there is a unique morphism SpecA→ P
n such that X = C ×Pn SpecA.

(f) For any curve X ⊆ P
2
k of degree d, show that h0(NX) = n and h1(NX) = 0.

(Do not assume X nonsingular.)

1.2. Curves on quadric surfaces in P
3

P
3

P
3. Consider the family C of all nonsingular

curves C that lie on some nonsingular quadric surface Q in P
3 and have bidegree

(a, b) with a, b > 0.

(a) By considering the linear system of curves C on a fixed Q, and then varying Q,
show that if the total degree d is equal to a + b ≥ 5, then the dimension of the
family C is ab+ a+ b+ 9.

(b) If a, b ≥ 3, show that H0(C,NC) has the same dimension ab + a + b + 9, using
the exact sequence of normal bundles

0 → NC/Q → NC → NQ|C → 0.

Show that NC/Q
∼= OC(C2) is nonspecial, i.e., its H1 is zero, so you can compute

its H0 by Riemann–Roch. Then note that NQ|C ∼= OC(2), and compute its H0

using the exact sequence

0 → OQ(2 − C) → OQ(2) → OC(2) → 0

and the vanishing theorems for H1 of line bundles on Q given in [57, III, Ex. 5.6].
(c) Conclude that for a, b ≥ 3 the family C gives (an open subset of) an irreducible

component of the Hilbert scheme of dimension ab + a + b + 9, which is smooth
at each of its points.

(d) What goes wrong with this argument if a = 2 and b ≥ 4? Cf. (Ex. 6.4).

1.3. Complete intersection curves in P
3

P
3

P
3. A curve C in P

3
k is a complete

intersection if its homogeneous ideal I ⊆ k[x, y, z, w] is generated by two homo-
geneous polynomials. Let C be a complete intersection curve defined by polynomials
of degrees a, b ≥ 1.

(a) The complete intersection curve C has degree d = ab and arithmetic genus
g = 1

2
ab(a+ b− 4) + 1. The dualizing sheaf ωC is isomorphic to OC(a+ b− 4).

For any a, b ≥ 1, a general such complete intersection curve is nonsingular. The
family of all such curves is irreducible and of dimension 2 ( a+3

3 ) − 2 if a = b or
( a+3

3 ) +
(
b+3
3

)
−
(
b−a+3

3

)
− 2 if a < b.
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(b) The normal sheaf is NC
∼= OC(a) ⊕OC(b). Using the resolution

0 → OP(−a− b) → OP(−a) ⊕OP(−b) → IC → 0,

verify that H0(NC) has dimension equal to the dimension of the family above, so
that the family of complete intersection curves defined by polynomials of degrees
a and b is a nonsingular open subset of an irreducible component of the Hilbert
scheme.

1.4. The limit of a flat family of complete intersection curves in P
3 need not be

a complete intersection curve. In other words, the open set of the Hilbert scheme
formed by complete intersection curves may not be closed. For an example, fix a
λ ∈ k, λ �= 0, 1, and consider the family of complete intersection curves over k[t, t−1]
defined by the equations

{
tyz − wx = 0,

yw − t(x− z)(x− λz) = 0.

(a) Show that for any t �= 0, these equations define a nonsingular cure Ct of degree
4 and genus 1.

(b) Now extend this family to a flat family over all of k[t], and show that the special
fiber C0 over t = 0 is the union of a nonsingular plane cubic curve with a line not
in that plane, but meeting the cubic curve at one point. Show also that C0 is not
a complete intersection. Since C0 is a singular curve belonging to a flat family
whose general member is nonsingular, we say that C0 is a smoothable singular
curve.

Note. What is happening in this example is that the curves Ct, as t approaches
zero, are being pushed away from the point P : (x, y, z, w) = (0, 0, 0, 1) of the curve
toward the plane w = 0. In the end the irreducible curve Ct breaks into two pieces:
the plane cubic curve plus a line through P .

1.5. Show that the Hilbert scheme of degree 4 and genus 1 curves is still nonsingular
of dimension 16 at the point corresponding to the curve C0 of (Ex. 1.4).

(a) First show that if a curve Y is the union of two nonsingular curves C and D in
P

3, meeting transversally at a single point P , then there are exact sequences of
normal sheaves

0 → NY → NY |D ⊕NY |C → NY ⊗ kP → 0

and

0 → NC → NY |C → kP → 0,

0 → ND → NY |D → kP → 0.

(b) Apply these sequences to the union of a plane cubic curve and a line C0 as above,
to show that h0(NC0) = 16. Since C0 is contained in the closure of the complete
intersection curves, which form a family of dimension 16, this shows that the
Hilbert scheme is smooth at C0. For another proof of this fact, see (Ex. 8.3).
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1.6. Twisted cubic curves. The twisted cubic curve in P
3 is defined parametri-

cally by (x0, x1, x2, x3) = (u3, tu2, t2u, t3) for (t, u) ∈ P
1. More generally we call any

curve obtained from this one by a linear change of coordinates in P
3 a twisted cubic

curve.

(a) Show that any nonsingular curve of degree 3 and genus 0 in P
3 is a twisted cubic

curve. Show that these form a family of dimension 12, and that H0(C,NC) = 12
for any such curve. Thus the twisted cubic curves form a nonsingular open
subset of an irreducible component of the Hilbert scheme of curves with Hilbert
polynomial 3z + 1.

(b) Consider a subscheme Y ⊆ P
3 that is a disjoint union of a plane cubic curve and

a point. Show that these schemes form another nonsingular open subset of the
Hilbert scheme of curves with Hilbert polynomial 3z + 1. This component has
dimension 15.

(c) There is a flat family of twisted cubic curves whose limit is a curve Y0, supported
on a plane nodal cubic curve, and having an embedded point at the node [57,
III, 9.8.4]. Show that this curve is in the closure of both irreducible components
mentioned above, hence corresponds to a singular point on the Hilbert scheme.

(d) Now show that h0(NY0/P3) = 16, confirming that Y0 is a singular point
of the Hilbert scheme. Hint: Show that the homogeneous ideal of Y0, I =
(z2, yz, xz, y2w − x2(x + w)), has a resolution over the polynomial ring R =
k[x, y, z, w] as follows:

R(−3)3 ⊕R(−4) → R(−2)3 ⊕R(−3) → I → 0.

Tensor with B = R/I, then dualize and sheafify to get a resolution

0 → NY/P3 → OY0(2)3 ⊕OY0(3) → OY0(3)3 ⊕OY0(4).

Compute explicitly with the sections of OY0(2) and OY0(3), which all come from
polynomials in R, to show that h0(NY/P3) = 16.

Note. The structure of this Hilbert scheme is studied in detail in the paper [134].

1.7. Let C be a nonsingular curve in P
n that is nonspecial, i.e., H1(OC(1)) = 0.

Show that the Hilbert scheme is nonsingular at the point corresponding to C. Hint:
Use the Euler sequence for the tangent bundle on P

n, restricted to C, and use the
exact sequence relating the tangent bundle of C, the tangent bundle of P

n, and the
normal bundle of C.

2. Structures over the Dual Numbers

The very first deformation question to study is structures over the dual num-
bers D = k[t]/t2. That is, one gives a structure (e.g., a scheme, or a scheme
with a subscheme, or a scheme with a sheaf on it) over k and one seeks to
classify extensions of this structure over the dual numbers. These are also
called first-order deformations.

To ensure that our structure is evenly spread out over the base, we will
always assume that the extended structure is flat over D. Flatness is the
technical condition that corresponds to the intuitive idea of a deformation.
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In this section we will apply this study to Situations A, B, and C.
Recall that a module M is flat over a ring A if the functor N �→ N ⊗A M

is exact on the category of A-modules. A morphism of schemes f : X → Y is
flat if for every point x ∈ X, the local ring Ox,X is flat over the ring Of(x),Y .
A sheaf of OX -modules F is flat over Y if for every x ∈ X, its stalk Fx is flat
over Of(x),Y .

Lemma 2.1. A module M over a noetherian ring A is flat if and only if for
every prime ideal p ⊆ A, TorA

1 (M,A/p) = 0.

Proof. The exactness of the functor N �→ N ⊗A M is equivalent to
Tor1(M,N) = 0 for all A-modules N . Since Tor commutes with direct limits,
it is sufficient to require Tor1(M,N) = 0 for all finitely generated A-modules
N . Now over a noetherian ring A, a finitely generated module N has a filtra-
tion whose quotients are of the form A/pi for various prime ideals pi ⊆ A [103,
p. 51]. Thus, using the exact sequence of Tor, we see that Tor1(M,A/p) = 0
for all p implies Tor1(M,N) = 0 for all N ; hence M is flat.

In the sequel, we will often make use of the following result, which is a
special case of the “local criterion of flatness.”

Proposition 2.2. Let A′ → A be a surjective homomorphism of noetherian
rings whose kernel J has square zero. Then an A′-module M ′ is flat over A′

if and only if

(1)M = M ′ ⊗A′ A is flat over A, and
(2) the natural map M ⊗A J →M ′ is injective.

Proof. Note that since J has square zero, it is an A-module and we can
identify M ′ ⊗A′ J with M ⊗A J .

If M ′ is flat over A′, then (1) follows by base extension, and (2) follows by
tensoring M ′ with the exact sequence

0→ J → A′ → A→ 0.

Suppose conversely that M ′ satisfies conditions (1) and (2). By the lemma,
it is sufficient to show that TorA′

1 (M ′, A′/p′) = 0 for every prime ideal p′ ⊆ A′.
Since J is nilpotent, it is contained in p′. Letting p be the prime ideal p′/J of
A, we can write a diagram of exact sequences

0 0
↓ ↓

0 → J → p′ → p → 0
‖ ↓ ↓

0 → J → A′ → A → 0
↓ ↓

A′/p′ = A/p
↓ ↓
0 0
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Tensoring with M ′ we obtain

0 0
↓ ↓

TorA′
1 (M ′, A′/p′) → TorA

1 (M,A/p)
↓ ↓

M ⊗A J → M ′ ⊗A′ p′ → M ⊗A p → 0
‖ ↓ ↓

M ⊗A J → M ′ → M → 0
↓ ↓

M ′ ⊗A′ A′/p′ = M ⊗A A/p
↓ ↓
0 0

By hypothesis (2), the second (and therefore also the first) horizontal sequence
is exact on the left. It follows from the snake lemma that the Tors at the top
are isomorphic. The second is zero by hypothesis (1), so the first is also, as
required.

Now we consider our first deformation problem, Situation A. Let X be a
scheme over k and let Y be a closed subscheme of X. We define a deformation
of Y over D in X to be a closed subscheme Y ′ ⊆ X ′ = X ×D, flat over D,
such that Y ′ ×D k = Y . We wish to classify all deformations of Y over D.

We consider the affine case first. Then X corresponds to a k-algebra B,
and Y is defined by an ideal I ⊆ B. We are seeking ideals I ′ ⊆ B′ = B[t]/t2

with B′/I ′ flat over D and such that the image of I ′ in B = B′/tB′ is just I.
Note that (B′/I ′)⊗D k = B/I. Since B is automatically flat over k, by (2.2)
the flatness of B′/I ′ over D is equivalent to the exactness of the sequence

0→ B/I
t→ B′/I ′ → B/I → 0.

Suppose I ′ is such an ideal, and consider the diagram

0 0 0
↓ ↓ ↓

0→ I
t→ I ′ → I → 0

↓ ↓ ↓
0→ B

t→ B′ → B → 0
↓ ↓ ↓

0→ B/I
t→ B′/I ′ → B/I → 0

↓ ↓ ↓
0 0 0

where the exactness of the bottom row implies the exactness of the top row.
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Proposition 2.3. In the situation above, to give I ′ ⊆ B′ such that B′/I ′ is
flat over D and the image of I ′ in B is I is equivalent to giving an element
ϕ ∈ HomB(I,B/I). In particular, ϕ = 0 corresponds to the trivial deformation
given by I ′ = I ⊕ tI inside B′ ∼= B ⊕ tB.

Proof. We will make use of the splitting B′ = B ⊕ tB as B-modules, or,
equivalently, of the section σ : B → B′ given by σ(b) = b+ 0 · t, which makes
B′ into a B-module.

Take any element x ∈ I. Lift it to an element of I ′, which, using the
splitting of B′, can be written x + ty for some y ∈ B. Two liftings differ by
something of the form tz with z ∈ I. Thus y is not uniquely determined, but
its image ȳ ∈ B/I is. Now sending x to ȳ defines a mapping ϕ : I → B/I.
It is clear from the construction that it is a B-module homomorphism.

Conversely, suppose ϕ ∈ HomB(I,B/I) is given. Define

I ′ = {x+ ty | x ∈ I, y ∈ B, and the image of y in B/I is equal to ϕ(x)}.

Then one checks easily that I ′ is an ideal of B′, that the image of I ′ in B is
I, and that there is an exact sequence

0→ I
t→ I ′ → I → 0.

Therefore there is a diagram as before, where this time the exactness of the
top row implies the exactness of the bottom row, and hence that B′/I ′ is flat
over D.

These two constructions are inverse to each other, so we obtain a
natural one-to-one correspondence between the set of such I ′ and the set
HomB(I,B/I), whereby the trivial deformation I ′ = I ⊕ tI corresponds to
the zero element.

Now we wish to globalize this argument to the case of a scheme X over
k and a given closed subscheme Y . There are two ways to do this. One is to
cover X with open affine subsets and use the above result. The construction
is compatible with localization, and the correspondence is natural, so we get
a one-to-one correspondence between the flat deformations Y ′ ⊆ X ′ = X ×D
and elements of the set HomX(I,OY ), where I is the ideal sheaf of Y in X.

The other method is to repeat the above proof in the global case, simply
dealing with sheaves of ideals and rings, on the topological space of X (which
is equal to the topological space of X ′).

Before stating the conclusion, we will define the normal sheaf of Y in X.
Note that the group HomX(I,OY ) can be regarded as H0(X,HomX(I,OY )).
Furthermore, homomorphisms of I to OY factor through I/I2, which is a
sheaf on Y . So

HomX(I,OY ) = HomY (I/I2,OY ),

and this latter sheaf is called the normal sheaf of Y in X, and is denoted by
NY/X . If X is nonsingular and Y is a locally complete intersection in X, then
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I/I2 is locally free, so NY/X is locally free also and can be called the normal
bundle of Y in X. This terminology derives from the fact that if Y is also
nonsingular, there is an exact sequence

0→ TY → TX |Y → NY/X → 0,

where TY and TX denote the tangent sheaves to Y and X, respectively. In this
case, therefore, NY/X is the usual normal bundle.

Summing up our results gives the following.

Theorem 2.4. Let X be a scheme over a field k, and let Y be a closed
subscheme of X. Then the deformations of Y over D in X are in natural
one-to-one correspondence with elements of H0(Y,NY/X), the zero element
corresponding to the trivial deformation.

Corollary 2.5. If Y is a closed subscheme of the projective space X = P
n
k ,

then the Zariski tangent space of the Hilbert scheme H at the point y corre-
sponding to Y is isomorphic to H0(Y,NY/X).

Proof. The Zariski tangent space to H at y can be interpreted as the set of
morphisms from the dual numbers D to H sending the closed point to y [57,
II, Ex. 2.8]. Because of the universal property of the Hilbert scheme (1.1(a)),
this set is in one-to-one correspondence with the set of deformations of Y over
the dual numbers, which by (2.4) is H0(Y,NY/X).

Next we consider Situation B. Let X be a scheme over k and let L be
an invertible sheaf on X. We will study the set of isomorphism classes of
invertible sheaves L′ on X ′ = X × D such that L′ ⊗ OX

∼= L. In this case
flatness is automatic, because L′ is locally free and X ′ is flat over D.

Proposition 2.6. Let X be a scheme over k, and L an invertible sheaf on X.
The set of isomorphism classes of invertible sheaves L′ on X × D such that
L′ ⊗ OX

∼= L is in natural one-to-one correspondence with elements of the
group H1(X,OX).

Proof. We use the fact that on any ringed space X, the isomorphism classes
of invertible sheaves are classified by H1(X,O∗

X), where O∗
X is the sheaf of

multiplicative groups of units in OX [57, III, Ex. 4.5]. The exact sequence

0→ OX
t→ OX′ → OX → 0

gives rise to an exact sequence of sheaves of abelian groups

0→ OX
α→ O∗

X′ → O∗
X → 0,

where α(x) = 1 + tx. Here OX is an additive group, while O∗
X′ and O∗

X are
multiplicative groups, and α is a truncated exponential map. Because the map
of rings D → k has a section k → D, it follows that this latter sequence is
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a split exact sequence of sheaves of abelian groups. So taking cohomology we
obtain a split exact sequence

0→ H1(X,OX)→ H1(X ′,O∗
X′)→ H1(X,O∗

X)→ 0.

This shows that the set of isomorphism classes of invertible sheaves on
X ′ restricting to a given isomorphism class on X is a coset of the group
H1(X,OX). Letting 0 correspond to the trivial extension L′ = L × D, we
obtain the result.

Proceeding to Situation C, we will actually consider a slightly more general
set-up. Let X be a scheme over k, and let F be a coherent sheaf on X.
We define a deformation of F over D to be a coherent sheaf F ′ on X ′ = X×D,
flat over D, together with a homomorphism F ′ → F such that the induced
map F ′ ⊗D k → F is an isomorphism. We say that two such deformations
F ′

1 → F and F ′
2 → F are equivalent if there is an isomorphism F ′

1
∼→ F ′

2

compatible with the given maps to F .

Theorem 2.7. Let X be a scheme over k, and let F be a coherent sheaf on
X. The (equivalence classes of) deformations of F over D are in natural one-
to-one correspondence with the elements of the group Ext1X(F ,F), where the
zero-element corresponds to the trivial deformation.

Proof. By (2.2), the flatness of F ′ over D is equivalent to the exactness of
the sequence

0→ F t→ F ′ → F → 0

obtained by tensoring F ′ with 0→ k
t→ D → k → 0. Since the latter sequence

splits, we have a splitting OX → OX′ , and thus we can regard this sequence
of sheaves as an exact sequence of OX -modules. By Yoneda’s interpretation
of the Ext groups [24, Ex. A3.26], we obtain an element ξ ∈ Ext1X(F ,F).
Conversely, an element in that Ext group gives F ′ as an extension of F by F
asOX -modules. To give a structure of anOX′ -module on F ′ we have to specify
multiplication by t. But this can be done in one and only one way compatible
with the sequence above and the requirement that F ′ ⊗D k ∼= F , namely
projection from F ′ to F followed by the injection t : F → F ′. Note finally
that F ′ → F and F ′′ → F are equivalent as deformations of F if and only if
the corresponding elements ξ, ξ′ are equal. Thus the deformations F ′ are in
natural one-to-one correspondence with elements of the group Ext1(F ,F).

Remark 2.7.1. Given F on X, we can also pose a different problem, like the
one in (2.6), namely to classify isomorphism classes of coherent sheaves F ′

on X ′, flat over D, such that F ′ ⊗D k is isomorphic to F (without specifying
the isomorphism). This set need not be the same as the set of deformations
of F , but we can explain their relationship as follows. The group AutF of
automorphisms of F acts on the set of deformations of F by letting α ∈ AutF
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applied to f : F ′ → F be αf : F ′ → F . Now let f : F ′ → F and g : F ′′ → F
be two deformations of F . One sees easily that F ′ and F ′′ are isomorphic as
sheaves on X ′ if and only if there exists an α ∈ AutF such that αf and g
are equivalent as deformations of F . Thus the set of F ′’s up to isomorphism
as sheaves on X ′ is the orbit space of Ext1X(F ,F) under the action of AutF .
This kind of subtle distinction will play an important role in questions of
pro-representability (Chapter 3).

Corollary 2.8. If E is a vector bundle over X, then the deformations of
E over D are in natural one-to-one correspondence with the elements of
H1(X, End E), where End E = Hom(E , E) is the sheaf of endomorphisms of E.
The trivial deformation corresponds to the zero element.

Proof. In this case, since E is locally free, Ext1(E , E) = Ext1(OX , End E) =
H1(X, End E).

Remark 2.8.1. If E is a line bundle, i.e., an invertible sheaf L on X, then
End E ∼= OX , and the deformations of L are classified by H1(OX). We get the
same answer as in (2.6) because AutL = H0(O∗

X) and for any L′ invertible on
X ′, AutL′ = H0(O∗

X′). Now H0(O∗
X′)→ H0(O∗

X) is surjective because of the
split exact sequence mentioned in the proof of (2.6), and from this it follows
that two deformations L′

1 → L and L′
2 → L are equivalent as deformations of

L if and only if L′
1 and L′

2 are isomorphic as invertible sheaves on X ′.

Remark 2.8.2. Use of the word “natural.” In each of the main results of this
section, we have said that a certain set was in natural one-to-one correspon-
dence with the set of elements of a certain group. We have not said exactly
what we mean by this word natural. So for the time being, you may under-
stand it something like this: If I say there is a natural mapping from one set
to another, that means I have a particular construction in mind for that map-
ping, and if you see my construction, you will agree that it is natural. It does
not involve any unnatural choices. Use of the word natural carries with it the
expectation (but not the promise) that the same construction carried out in
parallel situations will give compatible results. It should be compatible with
localization, base-change, etc. However, natural does not mean unique. It is
quite possible that someone else could find another mapping between these
two sets, different from this one, but also natural from a different point of
view.

In contrast to the natural correspondences of this section, we will see later
situations in which there are nonnatural one-to-one correspondences. Having
fixed one deformation, any other will define an element of a certain group,
thus giving a one-to-one correspondence between the set of all deformations
and the elements of the group, with the fixed deformation corresponding to
the zero element. So there is a one-to-one correspondence, but it depends on
the choice of a fixed deformation, and there may be no such choice that is
natural, i.e., no one we can single out as a “trivial” deformation. In this case
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we say that the set is a principal homogeneous space or torsor under the action
of the group—cf. §6 for examples.

References for this section. The notion of flatness is due to Serre [153],
who showed that there is a one-to-one correspondence between coherent alge-
braic sheaves on a projective variety over C and the coherent analytic sheaves
on the associated complex analytic space. He observed that the algebraic and
analytic local rings have the same completion, and that this makes them a
“flat couple.” The observation that localization and completion both enjoy
this property, and that flat modules are those that are acyclic for the Tor
functors, explained and simplified a number of situations by combining them
into one concept. Then in the hands of Grothendieck, flatness became a cen-
tral tool for managing families of structures of all kinds in algebraic geometry.
The local criterion of flatness is developed in [47, IV, §5]. Our statement is
[loc. cit., 5.5]. A note before [loc. cit. 5.2] says “La proposition suivante a été
dégagée au moment du Séminaire par Serre; elle permet des simplifications
substantielles dans le présent numéro.”

The infinitesimal study of the Hilbert scheme is in Grothendieck’s Bourbaki
seminar [45, exposé 221].

Exercises.

2.1. If X is a scheme with H1(OX) = 0, then by (2.6) there are no nontrivial
extensions of an invertible sheaf to a deformation of X over the dual numbers. This
suggests that perhaps there are no global nontrivial families either. Indeed this is
true with the following hypotheses. Let X be an integral projective scheme over k
with H1(X,OX) = 0. Let T be a connected scheme with a closed point t0. Let L
be an invertible sheaf on X × T , and let L0 = L ⊗ OX0 be the restriction of L to
the fiber X0 = X × k(t0) over t0. Show then that there is an invertible sheaf M on
T such that L ∼= p∗1L0 ⊗ p∗2M. In particular, all the fibers of L over points of T are
isomorphic. (Hint: Use [57, III, Ex. 12.6].)

2.2. The Jacobian of an elliptic curve. Let C be an elliptic curve over k,
that is, a nonsingular projective curve of genus 1 with a fixed point P0. Then any
invertible sheaf L of degree 0 on C is isomorphic to OC(P − P0) for a uniquely
determined point P ∈ C. Thus the curve C itself acts as a parameter space for the
group Pic0(C) of invertible sheaves of degree 0, and as such is called the Jacobian
variety J of C. Describe explicitly the functorial properties of J as a classifying
space and thus justify the identification of the one-dimensional space H1(OC) with
the Zariski tangent space to J at any point (cf. [57, III, §4]).

2.3. Vector bundles on P
1

P
1

P
1. One knows that every vector bundle on P

1 is a
direct sum of line bundles O(ai) for various ai ∈ Z [57, V, Ex. 2.6]. Thus the
set of isomorphism classes of vector bundles of given rank and degree is a discrete
set. Nevertheless, there are nontrivial deformations of bundles on P

1. Let E0 =
O(−1)⊕O(1) and show that H1(P1, End E0) has dimension one. A nontrivial family
containing E0 is given by the extensions

0 → O(−1) → Et → O(1) → 0
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for t ∈ Ext1(O(1),O(−1)) = H1(O(−2)). Show that for t �= 0, Et ∼= O ⊕ O, while
for t = 0 we get E0.

2.4. Rank 222 bundles on an elliptic curve. Let C be an elliptic curve. Let E
be a rank 2 vector bundle obtained as a nonsplit extension

0 → OC → E → OC(P ) → 0

for some point P ∈ C.

(a) Show that E is normalized in the sense that H0(E) �= 0, but for any invertible
sheaf L with degL < 0, H0(E ⊗L) = 0. Show also that E is uniquely determined
by P , up to isomorphism.

(b) Show that h0(E) = 1 and h1(End E) = 1.
(c) Show that any normalized rank 2 vector bundle of degree 1 on C is isomorphic

to an E as above, for a uniquely determined point P ∈ C. Thus the family of
all such bundles is parametrized by the curve C, consistent with the calculation
h1(End E) = 1.

2.5. A line bundle and its associated divisor. Let X be an integral projective
scheme. Let L be an invertible sheaf on X, let s ∈ H0(L) be a global section, and
let Y = (s)0 be the associated divisor on X. We wish to compare deformations of L
as an invertible sheaf on X with deformations of Y as a closed subscheme of X.

(a) Show that the normal bundle of Y in X is isomorphic to LY = L ⊗ OY . Then
use the exact sequence

0 → OX → L → LY → 0

to obtain a long exact sequence of cohomology

0 → H0(OX)
s→ H0(L)

α→ H0(LY )
β→ H1(OX)

γ→ H1(L) → · · · .

We interpret this as follows. The image of α corresponds to deformations of Y
within the linear system |Y |. The map β gives the deformation of L associated
to a deformation of Y . If the map γ is nonzero, then some deformations of L
may not come from a deformation of Y , because the section s does not lift to
the deformation of L.

(b) For an example of this latter situation, let X be a nonsingular projective curve
of genus g ≥ 2, let P ∈ X be a point, and let L = OX(P ). If Q is another point,
we can consider the family of invertible sheaves LQ = OX(2P −Q). For Q = P
we recover L. For Q �= P , the sheaf LQ has no global sections (assuming 2P is
not in the linear system g1

2 if X is hyperelliptic). In this case the sheaf deforms,
but the section does not.

(c) The exact sequence in (a) shows that if H1(L) = 0, then for any lifting L′ of
L over the dual numbers, the section s lifts to a section of L′. A corresponding
global result also holds: Changing notation, let L be an invertible sheaf on X×T
for some scheme T , let L0 be the restriction to the fiber over a point t0 ∈ T , and
assume that H1(X,L0) = 0. Show that p2∗L is locally free on T , so that every
section of L0 on X extends to a section of L over some neighborhood of t0 ∈ T .
(Hint: Use the theorem of cohomology and base change [57, III, 12.11].)
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2.6. Rank 2 vector bundles on P
3

P
3

P
3. Let E be a rank 2 vector bundle on P

3, let
s be a section of H0(E) that does not vanish on any divisor, and let Y = (s)0 be the
curve of zeros of s. Then there is an exact sequence

0 → O s→ E → IY (a) → 0,

where a = c1(E) is the first Chern class of E . We wish to compare deformations of
E with deformations of the closed subscheme Y in P

3.

(a) Show that the normal bundle of Y in P
3 is EY = E ⊗OY . (Note that since E has

rank 2, its dual E∨ is isomorphic to E(−a).)
(b) Show that there are exact sequences

0 → E∨ → End E → E ⊗ IY → 0

and
0 → E ⊗ IY → E → EY → 0

from which one can obtain exact sequences of cohomology

→ H1(E∨) → H1(End E) → H1(E ⊗ IY ) → H2(E∨) → · · ·
‖

→ H0(E) → H0(EY ) → H1(E ⊗ IY ) → H1(E) → · · · .

Here H1(End E) represents deformations of E , and H0(EY ) represents deforma-
tions of Y in P

3. In general a deformation of one may not correspond to a
deformation of the other.

(c) Now consider a particular case, the so-called null-correlation bundle on P
3.

It belongs to a sequence

0 → O → E → IY (2) → 0,

where Y is a disjoint union of two lines in P
3. For existence of such bundles,

show that Ext1(IY (2),O) ∼= Ext2(OY (2),O) ∼= H0(OY ), so that an extension
as above may be determined by choosing two scalars, one for each of the two
lines in Y .

(d) For the bundles in (c) verify that h0(End E) = 1, h1(End E) = 5; h0(E) = 5,
h0(EY ) = 8, h1(E ⊗ IY ) = 4 and h1(E) = h2(E∨) = 0. So in this case, any
deformation of E corresponds to a deformation of Y and vice versa. In fact, there
is a 5-dimensional global family of such bundles, parametrized by P

5 minus the
four-dimensional Grassmann variety G(1, 3) of lines in P

3 [58, 8.4.1], consistent
with the calculation that h1(End E) = 5.

3. The T i Functors

In this section we will present the construction and main properties of
the T i functors introduced by Lichtenbaum and Schlessinger [96]. For any
ring homomorphism A → B and any B-module M they define functors
T i(B/A,M), for i = 0, 1, 2. With A and B fixed these form a cohomological
functor in M , giving a nine-term exact sequence associated to a short exact
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sequence of modules 0 → M ′ → M → M ′′ → 0. On the other hand, if
A → B → C are three rings and homomorphisms, and if M is a C-module,
then there is a nine-term exact sequence of T i functors associated with the
three ring homomorphisms A → B, A → C, and B → C. The principal
application of these functors for us is the study of deformations of rings and
schemes (Situation D). We will see that deformations of a ring are classified
by a certain T 1 group (§5), and that obstructions lie in a certain T 2 group
(§10). We will also see in §4 that the vanishing of the T 1 functor characterizes
smooth morphisms and the vanishing of the T 2 functor characterizes locally
complete intersection morphisms.

Construction 3.1. Let A→ B be a homomorphism of rings and let M be a
B-module. Here we will construct the groups T i(B/A,M) for i = 0, 1, 2. The
rings are assumed to be commutative with identity, but we do not impose any
finiteness conditions yet.

First choose a polynomial ring R = A[x] in a set of variables x = {xi} (pos-
sibly infinite) such that B can be written as a quotient of R as an A-algebra.
Let I be the ideal defining B, so that there is an exact sequence

0→ I → R→ B → 0.

Second choose a free R-module F and a surjection j : F → I → 0 and let
Q be the kernel:

0→ Q→ F
j→ I → 0.

Having chosen R and F as above, the construction proceeds with no further
choices. Let F0 be the submodule of F generated by all “Koszul relations” of
the form j(a)b− j(b)a for a, b ∈ F . Note that j(F0) = 0 so F0 ⊆ Q.

We define a complex of B-modules, called the cotangent complex,

L2
d2→ L1

d1→ L0

as follows. Take L2 = Q/F0. Why is L2 a B-module? A priori it is an
R-module. But if x ∈ I and a ∈ Q, we can write x = j(x′) for some x′ ∈ F
and then xa = j(x′)a ≡ j(a)x′ (modF0). But j(a) = 0, since a ∈ Q, so we see
that xa = 0. Therefore L2 is a B-module.

Take L1 = F ⊗R B = F/IF , and let d2 : L2 → L1 be the map induced
from the inclusion Q→ F .

Take L0 = ΩR/A⊗RB, where ΩR/A is the module of relative differentials.
To define d1 just map L1 to I/I2, then apply the derivation d : R → ΩR/A,
which induces a B-module homomorphism I/I2 → L0.

Clearly d1d2 = 0, so we have defined a complex of B-modules. Note also
that L1 and L0 are free B-modules: L1 is free because it is defined from the
free R-module F ; L0 is free because R is a polynomial ring over A and so
ΩR/A is a free R-module.
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For any B-module M we now define the modules

T i(B/A,M) = hi(HomB(L•,M))

as the cohomology modules of the complex of homomorphisms of the complex
L• into M .

To show that these modules are well-defined (up to isomorphism), we must
verify that they are independent of the choices made in the construction.

Lemma 3.2. The modules T i(B/A,M) constructed above are independent of
the choice of F (keeping R fixed).

Proof. If F and F ′ are two choices of free R-modules mapping onto I, then
F ⊕ F ′ is a third choice, so by symmetry it is sufficient to compare F with
F ⊕ F ′. Since F ′ is free, the map j′ : F ′ → I factors through F , i.e., j′ = jp
for some map p : F ′ → F . Changing bases in F ⊕F ′, replacing each generator
e′ of F ′ by e′ − p(e′), we may assume that the map F ⊕ F ′ → I is just j on
the first factor and 0 on the second factor. Thus we have the diagram

0 → Q⊕ F ′ → F ⊕ F ′ (j,0)→ I → 0
↓ ↓ pr1 ↓ id

0 → Q → F
j→ I → 0

showing that the kernel of (j, 0) : F ⊕ F ′ → I is just Q ⊕ F ′. Then clearly
(F ⊕ F ′)0 = F0 + IF ′. Denoting by L′

• the complex obtained from the new
construction, we see that L′

2 = L2⊕F ′/IF ′, L′
1 = L1⊕(F ′⊗RB), and L′

0 = L0.
Since F ′ ⊗R B = F ′/IF ′ is a free B-module, the complex L′

• is obtained by
taking the direct sum of L• with the free acyclic complex F ′⊗RB → F ′⊗RB.
Hence when we take Hom of these complexes into M and then cohomology,
the result is the same.

Lemma 3.3. The modules T i(B/A,M) are independent of the choice of R.

Proof. Let R = A[x] and R′ = A[y] be two choices of polynomial rings with
surjections to B. As in the previous proof, it will be sufficient to compare R
with R′′ = A[x, y]. Furthermore, the map A[y]→ B can be factored through
A[x] by a homomorphism p : A[y]→ A[x]. Then, changing variables in A[x, y],
replacing each yi by yi − p(yi), we may assume that all the yi go to zero in
the ring homomorphism A[x, y]→ B. Then we have the diagram

0 → IR′′ + yR′′ → R′′ → B → 0
↑ ↑↓ p � id

0 → I → R → B → 0

showing that the kernel of R′′ → B is generated by I and all the y-variables.
Since we have already shown that the construction is independent of the

choice of F , we may use any F ’s we like in the present proof. Take any free
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R-module F mapping surjectively to I. Take F ′ a free R′′-module on the same
number of generators as F , and take G′ a free R′′-module on the index set of
the y variables. Then we have

0→ Q′ → F ′ ⊕G′ → IR′′ + yR′′ → 0
↑ ↑ ↑

0→ Q → F → I → 0

Observe that since the yi are independent variables, and G′ has a basis ei

going to yi, the kernel Q′ in the upper row must be generated by (1) things in
Q, (2) things of the form yia− j(a)ei with a ∈ F , and (3) things of the form
yiej−yjei. Clearly the elements of types (2) and (3) are in (F ′⊕G′)0. Therefore
Q′/(F ′ ⊕G′)0 is a B-module generated by the image of Q, so L2 = L′

2.
On the other hand, L′

1 = L1 ⊕ (G′ ⊗R′ B), and L′
0 = L0 ⊕ (ΩA[y]/A ⊗B).

Thus L′
1 has an extra free B-module generated by the ei, L′

0 has an extra free
B-module generated by the dyi, and the map d1 takes ei to dyi. As in the
previous proof we see that L′

• is obtained from L• by adding a free acyclic
complex, and hence the modules T i(B/A,M) are the same.

Remark 3.3.1. Even though the complex L• is not unique, the proofs of (3.2)
and (3.3) show that it gives a well-defined element of the derived category of
the category of B-modules.

Theorem 3.4. Let A→ B be a homomorphism of rings. Then for i = 0, 1, 2,
T i(B/A, ·) is a covariant, additive functor from the category of B-modules to
itself. If

0→M ′ →M →M ′′ → 0

is a short exact sequence of B-modules, then there is a long exact sequence

0 → T 0(B/A,M ′) → T 0(B/A,M) → T 0(B/A,M ′′) →
→ T 1(B/A,M ′) → T 1(B/A,M) → T 1(B/A,M ′′) →
→ T 2(B/A,M ′) → T 2(B/A,M) → T 2(B/A,M ′′).

In the language of [57, III, §1], the T i’s form a truncated δ-functor.

Proof. We have seen that the T i(B/A,M) are well-defined. By construction
they are covariant additive functors. Given a short exact sequence of modules
as above, since the terms L1 and L0 of the complex L• are free, we get a
sequence of complexes

0→ HomB(L•,M ′)→ HomB(L•,M)→ HomB(L•,M ′′)→ 0

that is exact except possibly for the map

HomB(L2,M)→ HomB(L2,M
′′),



22 1 First-Order Deformations

which may not be surjective. This sequence of complexes gives the long exact
sequence of cohomology above. Note that since the complex L• is unique
up to adding free acyclic complexes, the coboundary maps of the long exact
sequence are also functorial.

Theorem 3.5. Let A→ B → C be rings and homomorphisms, and let M be
a C-module. Then there is an exact sequence of C-modules

0→ T 0(C/B,M) → T 0(C/A,M) → T 0(B/A,M) →
→ T 1(C/B,M) → T 1(C/A,M) → T 1(B/A,M) →
→ T 2(C/B,M) → T 2(C/A,M) → T 2(B/A,M).

Proof. To prove this theorem, we will show that for suitable choices in the
construction (3.1), the resulting complexes form a sequence

0→ L•(B/A)⊗B C → L•(C/A)→ L•(C/B)→ 0

that is split exact on the degree 0 and 1 terms, and right exact on the degree
2 terms. Given this, taking Hom(·,M) will give a sequence of complexes that
is exact on the degree 0 and 1 terms, and left exact on the degree 2 terms.
Taking cohomology will give the nine-term exact sequence above.

First choose a surjection A[x] → B → 0 with kernel I, and a surjection
F → I → 0 with kernel Q, where F is a free A[x]-module, to calculate the
functors T i(B/A,M).

Next choose a surjection B[y] → C → 0 with kernel J , and a surjection
G→ J → 0 of a free B[y]-module G with kernel P , to calculate T i(C/B,M).

To calculate the functors T i for C/A, take a polynomial ring A[x, y] in the
x-variables and the y-variables. Then A[x, y] → B[y] → C gives a surjection
of A[x, y]→ C. If K is its kernel then there is an exact sequence

0→ I[y]→ K → J → 0,

where I[y] denotes polynomials in y with coefficients in I. Take F ′ and G′

to be free A[x, y]-modules on the same index sets as F and G respectively.
Choose a lifting of the map G → J to a map G′ → K. Then adding the
natural map F ′ → K we get a surjection F ′ ⊕G′ → K. Let S be its kernel:

0→ S → F ′ ⊕G′ → K → 0.

Now we are ready to calculate. Out of the choices thus made there are
induced maps of complexes

L•(B/A)⊗B C → L•(C/A)→ L•(C/B).

On the degree 0 level we have

ΩA[x]/A ⊗ C → ΩA[x,y]/A ⊗ C → ΩB[y]/B ⊗ C.
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These are free C-modules with bases {dxi} on the left, {dyi} on the right, and
{dxi, dyi} in the middle. So this sequence is clearly split exact.

On the degree 1 level we have

F ⊗ C → (F ′ ⊕G′)⊗ C → G⊗ C,

which is split exact by construction.
On the degree 2 level we have

(Q/F0)⊗B C → S/(F ′ ⊕G′)0 → P/G0.

The right-hand map is surjective because the map S → P is surjective. Clearly
the composition of the two maps is 0. We make no claim of injectivity for the
left-hand map. So to complete our proof it remains only to show exactness in
the middle.

Let s = f ′ + g′ be an element of S, and assume that its image in P is
contained in G0. We must show that s can be written as a sum of something
in (F ′ ⊕ G′)0 and something in the image of Q[y]. In the map S → P , the
element f ′ goes to 0. Let g be the image of g′. Then g ∈ G0, so g can be
written as a linear combination of expressions j(a)b− j(b)a with a, b ∈ G. Lift
a, b to elements a′, b′ in G′. Then the expressions j(a′)b′ − j(b′)a′ are in S.
Let g′′ be g′ minus a linear combination of these expressions j(a′)b′ − j(b′)a′.
We get a new element s′ = f ′ + g′′ in S, differing from s by something in
(F ′ ⊕ G′)0, and where now g′′ is in the kernel of the map G′ → G, which is
IG′. So we can write g′′ as a sum of elements xh with x ∈ I and h ∈ G′.
Let x′ ∈ F map to x by j. Then xh = j(x′)h ≡ j(h)x′(modF0). Therefore
s′ ≡ f ′ +Σj(h)x′(mod(F ′ ⊕G′)0), and this last expression is in F ′ ∩ S, and
therefore is in Q[y].

Now we will give some special cases and remarks concerning these functors.

Proposition 3.6. For any A → B and any M , T 0(B/A,M) =
HomB(ΩB/A,M) = DerA(B,M). In particular, T 0(B/A,B) =
HomB(ΩB/A, B) is the tangent module TB/A of B over A.

Proof. Write B as a quotient of a polynomial ring R, with kernel I. Then
there is an exact sequence [57, II, 8.4A]

I/I2 d→ ΩR/A ⊗R B → ΩB/A → 0.

Since F → I is surjective, there is an induced surjective map L1 → I/I2 → 0.
Thus the sequence

L1 → L0 → ΩB/A → 0

is exact. Taking Hom(·,M), which is left exact, we see that T 0(B/A,M) =
HomB(ΩB/A,M).
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Proposition 3.7. If B is a polynomial ring over A, then T i(B/A,M) = 0
for i = 1, 2 and for all M .

Proof. In this case we can take R = B in the construction. Then I = 0,
F = 0, so L2 = L1 = 0, and the complex L• is reduced to the L0 term.
Therefore T i = 0 for i = 1, 2 and any M .

Remark 3.7.1. We will see later that the vanishing of the T 1 functor char-
acterizes smooth morphisms (4.11).

Proposition 3.8. If A → B is a surjective ring homomorphism with kernel
I, then T 0(B/A,M) = 0 for all M , and T 1(B/A,M) = HomB(I/I2,M).
In particular, T 1(B/A,B) = HomB(I/I2, B) is the normal module NB/A of
SpecB in SpecA.

Proof. In this case we can take R = A, so that L0 = 0. Thus T 0 = 0 for any
M . Furthermore, the exact sequence

0→ Q→ F → I → 0,

tensored with B, gives an exact sequence

Q⊗A B → F ⊗A B → I/I2 → 0.

There is also a surjective map Q⊗AB → Q/F0, since the latter is a B-module,
so we have an exact sequence

L2 → L1 → I/I2 → 0.

Taking Hom(·,M) shows that T 1(B/A,M) = HomB(I/I2,M).

A useful special case is the following.

Corollary 3.9. If A is a local ring and B is a quotient A/I, where I is gene-
rated by a regular sequence a1, . . . , ar, then T 2(B/A,M) = 0 for all M .

Proof. Indeed, in this case, since the Koszul complex of a regular sequence is
exact [104, 16.5], we find Q = F0 in the construction of the T i-functors. Thus
L2 = 0 and T 2(B/A,M) = 0 for all M .

Remark 3.9.1. We will see later that the vanishing of the T 2 functor char-
acterizes relative local complete intersection morphisms (4.13).

Another useful special case is given by the following proposition.

Proposition 3.10. Suppose A = k[x1, . . . , xn] and B = A/I. Then for any
M there is an exact sequence

0→ T 0(B/k,M)→ Hom(ΩA/k,M)→ Hom(I/I2,M)→ T 1(B/k,M)→ 0

and an isomorphism

T 2(B/A,M) ∼→ T 2(B/k,M).
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Proof. Write the long exact sequence of T i-functors for the composition k →
A → B and use (3.6), (3.7), and (3.8). The same works for any base ring k,
not necessarily a field.

Remark 3.10.1. Throughout this section we have not made any finiteness
assumptions on the rings and modules. However, it is easy to see that if A is
a noetherian ring, B a finitely generated A-algebra, and M a finitely gene-
rated B-module, then the B-modules T i(B/A,M) are also finitely generated.
Indeed, we can take R to be a polynomial ring in finitely many variables over
A, which is therefore noetherian. Then I is finitely generated and we can
take F to be a finitely generated R-module. Thus the complex L• consists of
finitely generated B-modules, whence the result.

Notation. In the sequel we will often denote the modules T i(B/A,B) and
T i(B/k,B) by T i

B/A and T i
B/k, or even T i

B , if there is no confusion as to the
base. Furthermore T 0

B/A will be written TB/A, the tangent module of B over
A. Similarly for the sheaves T i(X/Y,OX) and T i(X/k,OX) (see (Ex. 3.5)),
we will write T i

X/Y and T i
X/k, or even T i

X . The sheaf T 0
X will be written TX ,

the tangent sheaf of X.

References for this section. The development of the T i functors presented
here is due to Lichtenbaum and Schlessinger [96]. A more general cohomology
theory for commutative rings, extending the definition to functors T i for all
i ≥ 0 has been developed independently by André and Quillen. Quillen states
[138] that the T 1 and T 2 functors of Lichtenbaum and Schlessinger are the
same as those defined more generally, though I have not seen a direct proof
of this fact. Later Illusie [73] globalized those theories by constructing the
cotangent complex of a morphism of schemes. This has been extended to
stacks in [93]. Independently, Laudal [92] gave another globalization of André’s
cohomology of algebras. For a computational approach with many examples,
see [160].

Exercises.

3.1. Let B = k[x, y]/(xy). Show that T 1(B/k,M) = M ⊗ k and T 2(B/k,M) = 0
for any B-module M .

3.2. More generally, if B = k[x, y]/(f), then T 1(B/k,M) = M/(fx, fy)M for any
M , where fx and fy are the partial derivatives of f with respect to x and y.

3.3. Let B = k[x, y]/(x2, xy, y2). Show that T 0(B/k,B) = k4, T 1(B/k,B) = k4,
and T 2(B/k,B) = k.

3.4. Let B be a finitely generated integral domain over an algebraically closed field
k, and let M be a torsion-free B-module. Show that T 1(B/k,M) = Ext1B(Ω1

B/k,M).
Hint: Compare the exact sequence of (3.10) with an exact sequence arising from the
cotangent sequence [57, II, 8.4A], and use the fact that SpecB has a dense open
subset that is nonsingular.
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3.5. Localization. Show that the construction of the T i functors is compatible
with localization, and thus define sheaves T i(X/Y,F) for any morphism of schemes
f : X → Y and any sheaf F of OX -modules, such that for any open affine V ⊆ Y
and any open affine U ⊆ f−1(V ), where F = M̃ , the sections of T i(X/Y,F) over U
give T i(U/V,M). Show that the T i sheaves satisfy a long exact sequence for change
of F analogous to (3.4) and a long exact sequence analogous to (3.5) for change of
schemes. Note that since the complexes L• used to define the T i functors are not
unique, one cannot in general define an analogous complex of sheaves L• on X by
this method.

3.6. Global construction of T iT iT i sheaves. Let f : X → Y be a projective
morphism, so that X can be realized as a closed subscheme of the projective space
P
n
Y over Y for some n. Show that in this case one can define a global complex L•

of sheaves on X such that for any OX -module F , the sheaf T i functors can be
computed as hi(HomX(L•,F)).

3.7. Base change I. Assume A noetherian, B a finitely generated A-algebra,
and M a B-module. Let A → A′ be a flat morphism, and let B′ = B ⊗A A′ and
M ′ = M ⊗B B′ be obtained by base extension. Show that T i(B/A,M) ⊗A A′ ∼=
T i(B′/A′,M ′) for each i.

3.8. Base change II. Again with A noetherian, B finitely generated, and A→ A′

a base extension, this time assume that B is flat over A. Let B′ = B ⊗A A′, and let
M ′ be a B′-module. Show that T i(B/A,M ′) = T i(B′/A′,M ′) for each i.

4. The Infinitesimal Lifting Property

In this section we first review the properties of nonsingular varieties. Then
we show that nonsingularity can be characterized by an “infinitesimal lifting
property” that is closely related to deformation theory. We also show that non-
singular varieties and smooth morphisms are characterized by the vanishing of
the T 1 functors, and that local complete intersections are characterized by the
vanishing of the T 2 functors. As a matter of terminology, we will use the word
“nonsingular” only for varieties over an algebraically closed field. Otherwise
we talk of a “smooth morphism,” or a scheme “smooth” over a base scheme.
If the base scheme is an algebraically closed field, the two notions coincide.

Let us consider a scheme X of finite type over an algebraically closed
ground field k. After the affine space A

n
k and the projective space P

n
k , the

nicest kind of scheme is a nonsingular one. The property of being nonsingular
can be defined extrinsically on open affine pieces by the Jacobian criterion [57,
I, §5]. Let Y be a closed subscheme of A

n, with dimY = r. Let f1, . . . , fs ∈
k[x1, . . . , xn] be a set of generators for the ideal IY of Y . Then Y is nonsingular
at a closed point P ∈ Y if the rank of the Jacobian matrix ‖(∂fi/∂xj)(P )‖
is equal to n − r. We say that Y is nonsingular if it is nonsingular at every
closed point. A scheme X is nonsingular if it can be covered by open affine
subsets that are nonsingular.
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This definition is awkward, because it is not obvious that the property of
being nonsingular is independent of the affine embedding used in the defini-
tion. For this reason it is useful to have an intrinsic criterion for nonsingularity.

Proposition 4.1. A scheme X of finite type over an algebraically closed field
k is nonsingular if and only if the local ring OP,X is a regular local ring for
every point P ∈ X [57, I, 5.1; II, 8.14A].

Using differentials we have another characterization of nonsingular vari-
eties.

Proposition 4.2. Let X be a scheme over k algebraically closed. Then X is
nonsingular if and only if the sheaf of differentials Ω1

X/k is locally free of rank
n = dimX at every point of X [57, II, 8.15].

This result is closely related to the original definition using the Jacobian
criterion. The generalization of the Jacobian criterion describes when a closed
subscheme Y of a nonsingular scheme X over k is nonsingular.

Proposition 4.3. Let Y be an irreducible closed subscheme of a nonsingular
scheme X over k algebraically closed, defined by a sheaf of ideals I. Then Y
is nonsingular if and only if

(1)ΩY/k is locally free, and
(2) the sequence of differentials [57, II, 8.12]

0→ I/I2 → Ω1
X/k ⊗OY → Ω1

Y/k → 0

is exact on the left.
Furthermore, in this case I is locally generated by n− r = dimX − dimY

elements, and I/I2 is locally free on Y of rank n− r [57, II, 8.17].

In this section we will see that nonsingular schemes have a special property
related to deformation theory, called the infinitesimal lifting property. The
general question is this. Suppose we are given a morphism f : Y → X of
schemes and an infinitesimal thickening Y ⊆ Y ′. This means that Y is a closed
subscheme of another scheme Y ′, and that the ideal I defining Y inside Y ′ is
nilpotent. Then the question is, does there exist a lifting g : Y ′ → X, i.e., a
morphism such that g restricted to Y is f? Of course, there is no reason for
this to hold in general, but we will see that if Y and X are affine, and X is
nonsingular, then it does hold, and this property of X, for all such morphisms
f : Y → X, characterizes nonsingular schemes.

Proposition 4.4 (Infinitesimal Lifting Property). Let X be a nonsingu-
lar affine scheme of finite type over k, let f : Y → X be a morphism from an
affine scheme Y over k, and let Y ⊆ Y ′ be an infinitesimal thickening of Y .
Then the morphism f lifts to a morphism g : Y ′ → X such that g|Y = f .
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Proof (cf. [57, II, Ex. 8.6]). First we note that Y ′ is also affine [57, III,
Ex. 3.1], so we can rephrase the problem in algebraic terms. Let X = SpecA,
let Y = SpecB, and let Y ′ = SpecB′. Then f corresponds to a ring homomor-
phism, which (by abuse of notation) we call f : A → B. On the other hand,
B is a quotient of B′ by an ideal I with In = 0 for some n. The problem is to
find a homomorphism g : A → B′ lifting f , i.e., such that g followed by the
projection B′ → B is f .

If we filter I by its powers and consider the sequence B′ = B′/In →
B′/In−1 → · · · → B′/I2 → B′/I, it will be sufficient to lift one step at a
time. Thus (changing notation) we reduce to the case I2 = 0.

SinceX is of finite type over k, we can write A as a quotient of a polynomial
ring P = k[x1, . . . , xn] by an ideal J . Composing the projection P → A with
f we get a homomorphism P → B, which we can lift to a homomorphism
h : P → B′, since one can send the variables xi to any liftings of their images
in B (this corresponds to the fact that the polynomial ring is a free object in
the category of k-algebras):

0 → J → P → A → 0
↓ h ↓ f

0 → I → B′ → B → 0

Now h induces a map h : J → I, and since I2 = 0, this gives a map h̄ :
J/J2 → I.

Next we note that the homomorphism P → A gives an embedding of X
in an affine n-space A

n
k . By (4.3), we obtain an exact sequence

0→ J/J2 → Ω1
P/k ⊗P A→ Ω1

A/k → 0,

and note that these modules correspond to locally free sheaves on X, hence
are projective A-modules. Via the maps h, f , we get a P -module structure on
B′, and A-module structures on B, I. Applying the functor HomA(·, I) to the
above sequence gives another exact sequence

0→ HomA(Ω1
A/k, I)→ HomP (Ω1

P/k, I)→ HomA(J/J2, I)→ 0.

Let θ ∈ HomP (Ω1
P/k, I) be an element whose image is h̄ ∈ HomA(J/J2, I).

We can regard θ as a k-derivation of P to the module I. Then we define a new
map h′ : P → B′ by h′ = h−θ. I claim that h′ is a ring homomorphism lifting
f and with h′(J) = 0. The first statement is a consequence of the lemma (4.5)
below. To see that h′(J) = 0, let y ∈ J . Then h′(y) = h(y) − θ(y). We need
only consider ymod J2, and then h(y) = θ(y) by choice of θ, so h′(y) = 0. Now
since h′(J) = 0, h′ descends to give the desired homomorphism g : A → B′

lifting f .

Lemma 4.5. Let B′ → B be a surjective homomorphism of k-algebras with
kernel I of square zero. Let R→ B be a homomorphism of k-algebras.
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(a) If f, g : R→ B′ are two liftings of the map R → B to B′, then θ = g − f
is a k-derivation of R to I.

(b)Conversely, if f : R → B′ is one lifting, and θ : R → I a derivation,
then g = f + θ is another homomorphism of R to B′ lifting the given map
R→ B.

In other words, if it is nonempty, the set of liftings R → B to k-algebra
homomorphisms of R to B′ is a principal homogeneous space under the action
by addition of the group Derk(R, I) = HomR(ΩR/k, I). (Note that since I2 =
0, I has a natural structure of a B-module and hence also of an R-module.)

Proof. (a) Let f, g : R→ B′ and let θ = g− f . As a k-linear map, θ followed
by the projection B′ → B is zero, so θ sends R to I. Let x, y ∈ R. Then

θ(xy) = g(xy)− f(xy)
= g(x)g(y)− f(x)f(y)
= g(x)(g(y)− f(y)) + f(y)(g(x)− f(x))
= g(x)θ(y) + f(y)θ(x)
= xθ(y) + yθ(x),

the last step being because g(x) and f(y) act in I just like x, y. Thus θ is a
k-derivation of R to I.

(b) Conversely, given f and θ as above, let g = f + θ. Then

g(xy) = f(xy) + θ(xy)
= f(x)f(y) + xθ(y) + yθ(x)
= (f(x) + θ(x))(f(y) + θ(y))
= g(x)g(y),

where we note that θ(x)θ(y) = 0, since I2 = 0. Thus g is a homomorphism of
R→ B′ lifting R to B.

For a converse to (4.4), we need only a special case of the infinitesimal
lifting property.

Proposition 4.6. Let X be a scheme of finite type over k algebraically closed.
Suppose that for every morphism f : Y → X of a punctual scheme Y (meaning
Y is the Spec of a local Artin ring), finite over k, and for every infinitesimal
thickening Y ⊆ Y ′ with ideal sheaf of square zero, there is a lifting g : Y ′ → X.
Then X is nonsingular.

Proof. It is sufficient (4.1) to show that the local ring OP,X is a regular local
ring for every closed point P ∈ X. So again we reduce to an algebraic question,
namely, let A,m be a local k-algebra, essentially of finite type over k, and with
residue field k. Assume that for every homomorphism f : A → B, where B
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is a local artinian k-algebra and for every thickening 0 → I → B′ → B → 0
with I2 = 0, there is a lifting g : A→ B′. Then A is a regular local ring.

Let a1, . . . , an be a minimal set of generators for the maximal ideal m of
A. Then there is a surjective homomorphism f of the formal power series ring
P = k[[x1, . . . , xn]] to Â, the completion of A, sending xi to ai, and creating
an isomorphism of P/n2 to A/m2, where n = (x1, . . . , xn) is the maximal ideal
of P .

Consider the surjections P/ni+1 → P/ni, each defined by an ideal of square
zero. Starting with the map A → A/m2 ∼= P/n2, we can lift step by step to
get maps of A → P/ni for each i, and hence a map g into the inverse limit,

which is P . Passing to Â, we have maps P
f→ Â

g→ P with the property that
g ◦ f is an isomorphism on P/n2. It follows that g ◦ f is an automorphism of
P (Ex. 4.1). Hence g ◦ f has no kernel, so f is injective. But f was surjective
by construction, so f is an isomorphism, and Â is regular. From this it follows
that A is regular, as required.

Corollary 4.7. Let A be a local ring, essentially of finite type over an alge-
braically closed field k, with residue field k. Then A is a regular local ring if
and only if it has the infinitesimal lifting property for local Artin rings B′ → B
finite over k.

Proof. Just localize (4.4) and (4.6).

The following result shows that infinitesimal deformations of nonsingular
affine schemes are trivial.

Corollary 4.8. Let X be a nonsingular affine scheme over k. Let A be a local
Artin ring over k, and let X ′ be a scheme, flat over SpecA, such that X ′×A k
(where by abuse of notation we mean X ′ ×Spec A Spec k) is isomorphic to X.
Then X ′ is isomorphic to the trivial deformation X ×k A of X over A.

Proof. We apply (4.4) to the identity map of X to X and the infinitesimal
thickening i : X ↪→ X ′ defined by the isomorphism X ′ ×A k ∼= X. Therefore
there is a lifting p : X ′ → X such that p ◦ i = idX . The maps of X ′ to X
and to SpecA define a map to the product: X ′ → X ×k A. Both of these
schemes are flat over A, and this map restricts to the identity on X, so it is
an isomorphism (Ex. 4.2).

Remark 4.8.1. The infinitesimal lifting property for nonsingular varieties
over an algebraically closed field that we have explained here can be genera-
lized to the relative case of a morphism of schemes, giving a characterization of
smooth morphisms (Ex. 4.7, Ex. 4.8). In fact, Grothendieck takes the infinites-
imal lifting property as one of the equivalent definitions of smooth morphisms.
See [48, IV, §17].

Next we investigate the relation between nonsingularity and the T i

functors.
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Theorem 4.9. Let X = SpecB be an affine scheme over k algebraically
closed. Then X is nonsingular if and only if T 1(B/k,M) = 0 for all
B-modules M . Furthermore, if X is nonsingular, then also T 2(B/k,M) = 0
for all M .

Proof. Write B as a quotient of a polynomial ring A = k[x1, . . . , xn] over
k. Then SpecA is nonsingular, and we can use the criterion of (4.3), which
shows that X is nonsingular if and only if the conormal sequence

0→ I/I2 → ΩA/k ⊗A B → ΩB/k → 0

is exact and ΩB/k is locally free, i.e., a projective B-module. Since ΩA/k is a
free A-module, the sequence will split, so we see that X is nonsingular if and
only if this sequence is split exact. By (3.10), T 1(B/k,M) = 0 for all M if
and only if the map

Hom(ΩA/k,M)→ Hom(I/I2,M)

is surjective for all M , and this is equivalent to the splitting of the sequence
above (just consider the case M = I/I2). Thus X is nonsingular if and only
if T 1(B/k,M) = 0 for all M .

For the vanishing of T 2(B/k,M), suppose X is nonsingular. By (3.10)
again, T 2(B/k,M) = T 2(B/A,M). Localizing at any point x ∈ X, by (4.3)
the ideal Ix is generated by n − r = dimA − dimB elements in the regular
local ring Ax. Hence these generators form a regular sequence, and (3.9) shows
that T 2(Bx/Ax,M) = 0 for all Bx-modules M . Thus T 2(B/A,M) = 0 by
localization (Ex. 3.5).

Corollary 4.10. Let B be a local k-algebra with residue field k algebraically
closed. Then B is a regular local ring if and only if T 1(B/k,M) = 0 for all
B-modules M , and in this case T 2(B/k,M) = 0 for all M .

Proof. By localization, using (4.1) and (4.9).

From this theorem we can deduce a relative version. We say that a mor-
phism of finite type f : X → Y of noetherian schemes is smooth if f is flat,
and for every point y ∈ Y , the geometric fiber Xy ⊗k(y) k(y) is nonsingular
over k(y), where k(y) is the algebraic closure of k(y) (cf. [57, III, 10.2]).

Theorem 4.11. A morphism of finite type f : X → Y of noetherian schemes
is smooth if and only if it is flat, and T 1(X/Y,F) = 0 for all coherent sheaves
F on X. Furthermore, if f is smooth, then also T 2(X/Y,F) = 0 for all F .

Proof. The question is local, so we may assume that X = SpecB and Y =
SpecA are affine and that f is given by a ring homomorphism A→ B.

First suppose B is flat over A and T 1(B/A,M) = 0 for all B-modules M .
Let y ∈ Y be a point, corresponding to a prime ideal p ⊆ A, and let k = k(y)
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be its residue field. Let A′ = A/p and B′ = B ⊗A A′ = B/pB. Then for any
B′-module M we obtain T 1(B′/A′,M) = T 1(B/A,M) = 0 by base change
II (Ex. 3.8). Write B′ as a quotient of a polynomial ring R = A′[x1, . . . , xn],
with kernel I. Then in particular T 1(B′/A′, I/I2) = 0.

Now consider the flat base extension from A′ to k̄, where k̄ is the algebraic
closure of k(y), which is the quotient field of A′. By base change I (Ex. 3.7),
T 1(B′⊗ k̄/k̄, (I/I2)⊗ k̄) = 0. But since the base change is flat, it follows that
B′⊗ k̄ is the quotient of the polynomial ring R⊗ k̄ = k̄[x1, . . . , xn] with kernel
Ī = I ⊗ k̄, and (I/I2)⊗ k̄ = Ī/Ī2. Then from the proof of (4.9) it follows that
SpecB′ ⊗ k̄ is nonsingular over k̄. Thus the geometric fibers of the morphism
f are nonsingular, and f is smooth.

For the converse, suppose that B is smooth over A. First we will show
that T 1(B/A,B/m) = 0 for every maximal ideal m ⊆ B. Let m correspond
to the point x ∈ SpecB, let f(x) = y, and let k be the residue field of y.
Then B/m is a module over the ring B ⊗A k, so by base change II (Ex. 3.8),
we obtain T 1(B/A,B/m) = T 1(B ⊗A k/k,B/m). Then by base change I
(Ex. 3.7), this latter module, tensored with k̄, the algebraic closure of k,
is equal to T 1(B ⊗ k̄/k̄, (B/m)⊗ k̄), and this one is zero, since the geometric
fibers are nonsingular. Since k → k̄ is a faithfully flat extension, it follows
that T 1(B ⊗ k/k,B/m) = 0 and hence T 1(B/A,B/m) = 0.

We observe that the functor T 1(B/A, ·) is an additive functor from finitely
generated B-modules to finitely generated B-modules, and is semi-exact in the
sense that to each short exact sequence of modules it gives a sequence of three
modules that is exact in the middle. It follows from the lemma of Dévissage
below (4.12) that T 1(B/A,M) = 0 for all finitely generated B-modules, and
hence for all B-modules, since the T i functors commute with direct limits.
The same argument shows also that T 2(B/A,M) = 0 for all M .

Lemma 4.12 (Dévissage). Let B be a noetherian ring, and let F be a semi-
exact additive functor from finitely generated B-modules to finitely generated
B-modules. Assume that F (B/m) = 0 for every maximal ideal m of B. Then
F (M) = 0 for all finitely generated B-modules.

Proof. Any finitely generated B-module M has a composition series whose
quotients are B/pi for various prime ideals pi. By semi-exactness, it is suffi-
cient to show that F vanishes on each of these. Thus we may assumeM = B/p.

We proceed by induction on the dimension of the support of M .
If dim SuppM = 0, then M is just B/m for some maximal ideal, and
F (M) = 0 by hypothesis. For the general case, let M = B/p have some
dimension r. For any maximal ideal m ⊇ p, choose an element t ∈ m−p. Then
t is a non-zero-divisor for M and we can write

0→M
t→M →M ′ → 0,

where M ′ is a module with support of dimension < r. Hence by the induction
hypothesis, F (M ′) = 0 and we get a surjection F (M) t→ F (M)→ 0. It follows
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from Nakayama’s lemma that F (M) localized at m is zero. This holds for any
m ⊇ p, i.e., any point of SpecB/p, and so F (M) = 0.

If A is a regular local ring and B = A/I is a quotient, we say that B is
a local complete intersection in A if the ideal I can be generated by dimA−
dimB elements.

Theorem 4.13. Let A be a regular local k-algebra with residue field k
algebraically closed, and let B = A/I be a quotient of A. Then B is a local
complete intersection in A if and only if T 2(B/k,M) = 0 for all B-modules
M .

Proof. Since A is regular, we have T 1(A/k,M) = 0 for i = 1, 2 and all
M by (4.10). Then from the exact sequence (3.5) we obtain T 2(B/k,M) =
T 2(B/A,M) for all M . If B is a local complete intersection in A, then the
vanishing of T 2 follows from (3.9).

Conversely, suppose that T 2(B/k,M) = 0 for all M . As above, this implies
T 2(B/A,M) = 0 for allM . To compute this group, in (3.1) we can take R = A,
I = I, and let F map to a minimal set of generators (a1, . . . , as) of I, with
kernel Q. Then the hypothesis T 2(B/A,M) = 0 for all M implies that

Hom(F/IF,M)→ Hom(Q/F0,M)

is surjective for all M , and this in turn (taking M = Q/F0) implies that the
mapping d2 : Q/F0 → F/IF has a splitting, i.e., a map p : F/IF → Q/F0 such
that p◦d2 = idQ/F0 . Since we chose a minimal set of generators for I, it follows
that Q ⊆ mF , where m is the maximal ideal of A. Thus the identity map p◦d2

sendsQ/F0 into m(Q/F0), and so by Nakayama’s lemma,Q/F0 = 0. ButQ/F0

is just the first homology group of the Koszul complex K•(a1, . . . , as) over A,
and the vanishing of this group is equivalent to a1, . . . , as being a regular
sequence [104, 16.5]. Thus B is a local complete intersection in A.

Remark 4.13.1. Since the condition T 2(B/k,M) = 0 for all B-modules M
depends only on B, and not on A, it follows that if B is a local complete inter-
section in one regular local ring, then it will be a local complete intersection
in any regular local ring of which it is a quotient. Thus we can say simply
that B is a local complete intersection ring without mentioning A.

Example 4.13.2. The node of (Ex. 3.1) is a local complete intersection and
correspondingly has T 2 = 0 for all M . The thick point of (Ex. 3.3) is not a
local complete intersection and has T 2(B/k,B) �= 0.

Remark 4.13.3. If we define a relative local complete intersection morphism
f : X → Y to be one that is flat and whose geometric fibers are local com-
plete intersection schemes, then an argument similar to the proof of (4.13)
shows that f is a relative local complete intersection morphism if and only if
T 2(X/Y,F) = 0 for all coherent sheaves F on X.
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References for this section. The definition of smooth morphisms and their
characterization by the infinitesimal lifting property are due to Grothendieck
[47]. The characterizations of smooth and local complete intersection mor-
phisms using the T i functors are due to Lichtenbaum and Schlessinger [96].

Exercises.

4.1. Let A be a local k-algebra with residue field k. Let f : A→ A be a k-algebra
homomorphism inducing an isomorphism A/m2 → A/m2, where m is the maximal
ideal of A. Show that f itself is an isomorphism, i.e., an automorphism of A.

4.2. Let A be a local artinian k-algebra, let X1 and X2 be schemes of finite type,
flat over A, and let f : X1 → X2 be an A-morphism that induces an isomorphism
of closed fibers f ⊗A k : X1 ×A k → X2 ×A k. Show that f itself is an isomorphism.

4.3. If X is any scheme of finite type over k, the sheaves T i(X/k,F) for i = 1, 2
and any coherent OX -module F have support in the singular locus of X.

4.4. Let B and B′ be local rings, essentially of finite type over k, having isolated
singularities at the closed points, and assume that B and B′ are analytically isomor-
phic, i.e., the completions B̂ and B̂′ are isomorphic. Show that the modules T iB/k
and T iB′/k for i = 1, 2 are isomorphic as modules over the isomorphic completions
of B and B′. In particular, they have the same lengths.

4.5. Let Y be a closed subscheme of a nonsingular scheme X over k with ideal
sheaf of I. Then for any coherent OY -module F there is an exact sequence of sheaves

0 → T 0(Y/k,F) → HomX(ΩX/k,F) → HomY (I/I2,F) → T 1(Y/k,F) → 0.

4.6. Let A be a regular local k-algebra with residue field k, let B = A/I for
some ideal I, and assume that I ⊆ m2, where m is the maximal ideal of A. Show
that T 1(B/k, k) is a k-vector space of dimension equal to the minimal number of
generators of I. Conclude that a local ring B is regular if and only if T 1(B/k, k) = 0.

4.7. Prove the relative version of the infinitesimal lifting property: LetX be smooth
over a scheme S, let f : Y → X be a morphism of an affine scheme over S to X, and
let Y ⊆ Y ′ be an infinitesimal thickening of S-schemes. Then f lifts to a morphism
g : Y ′ → X such that g/y = f . Hint: Imitate the proof of (4.4), using (4.11) to
characterize smoothness.

4.8. Prove the converse to (Ex. 4.7): assuming X/S flat, and that the infinitesimal
lifting property holds for punctual schemes Y over S, as in (4.6), show that X/S is
smooth. Hint: For any point s ∈ S, consider the base extension Spec k(s) → S.

4.9. Affine elliptic curves. Let k be an algebraically closed field, fix λ ∈ k,
λ �= 0, 1, and consider the family of affine elliptic curves over k[t] defined by the
equation y2 = x(x− 1) (x− (λ+ t)).

(a) This family is not trivial over any neighborhood of t = 0 because over a field, the
j-invariant is already determined by any open affine piece of an elliptic curve,
and the j-invariant varies in this family—cf. [57, IV, §4].
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(b) This family is still not trivial over the complete local ring k[[t]] at the origin,
because one can look at the j-invariant over the field of fractions of this ring.

(c) The projective completion of this family in P
2 is not trivial even over the Artin

ring C = k[t]/tn for any n ≥ 2, because the computation of the j-invariant can
be made to work over the ring C.

(d) However, the affine family over the Artin ring C is trivial for any n because of
(4.8). Your task, should you choose to accept it, is to find an explicit isomorphism
of this family over C with the trivial family y2 = x(x− 1)(x− λ). Hints follow.

(e) Find a, b, c, d ∈ C such that the transformation x′ = (ax + b)/(cx + d) sends
0, 1, λ to 0, 1, λ+ t.

(f) Substitute for x′ in the equation

y′2 = x′(x′ − 1)(x′ − (λ+ t))

and show that the result can be written as

y′2
(cx+ d)3

a(a− c)(a− c(λ+ t))
= x(x− 1)(x− λ).

(g) Now, using the fact that t is nilpotent, show that one can find f(x, t) and g(x, t)
in C[x] such that the substitutions

x′ = x+ tf(x, t),

y′ = y(1 + tg(x, t)),

bring the equation into the form y2 = x(x− 1)(x− λ).
(h) Show that the transformation (x, y) �→ (x′, y′) is an automorphism of the ring

C[x, y], so the two families are isomorphic over C.

5. Deformations of Rings

In this section we use the T i functors to study deformations of arbitrary
schemes (Situation D). We will see that the deformations of an affine scheme
X = SpecB over k are given by T 1(B/k,B), and that the deformations of
a nonsingular scheme X are given by H1(X, TX), where TX is the tangent
sheaf. As an application, we study deformations of cones.

Definition. If X is a scheme over k, and A an Artin ring over k, we define
a deformation of X over A to be a scheme X ′, flat over A, together with a
closed immersion i : X ↪→ X ′ such that the induced map i×Ak : X → X ′×Ak
is an isomorphism. Two such deformations X ′

1, i1 and X ′
2, i2 are equivalent if

there is an isomorphism f : X ′
1 → X ′

2 over A compatible with i1 and i2, i.e.,
such that i2 = f ◦ i1.

Remark 5.0.1. Why don’t we simply define a deformation of X to be a
scheme X ′ flat over A for which X ′×A k is isomorphic to X, without specify-
ing the isomorphism? The reason is that the set of these is less well behaved
functorially than the definition we have given, and in any case, this latter set
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can be recovered from the former by dividing by the action of the group of
automorphisms of X over k. This matter of automorphisms makes most defor-
mation problems more complicated than Situation A, where an isomorphism
of closed subschemes is just equality, and there are no automorphisms. (See
§18, where automorphisms play an important role.)

We start by considering deformations of affine schemes. Let B be a
k-algebra. A deformation of SpecB over the dual numbers D is then a
D-algebra B′, flat over D, together with a homomorphism B′ → B induc-
ing an isomorphism B′ ⊗D k → B. Because of (2.2) the flatness of B′ is
equivalent to the exactness of the sequence

0→ B
t→ B′ → B → 0. (∗)

Here we think of B′ and B on the right as rings, and B on the left as an ideal
of square 0, which is a B-module. Furthermore, B′ is a D-algebra and B is
a k-algebra. On the other hand, we can forget the D-algebra structure of B′

and regard it simply as a k-algebra via the inclusion k ⊆ D. Then, as in (2.7),
we see that the D-algebra structure of B′ can be recovered in a unique way
compatible with the exact sequence (∗). We need only specify multiplication
by t, and this must be done by passing from B′ to B on the right, followed
by the inclusion B → B′ on the left.

Thus we see that equivalence classes of deformations of B over D are in
one-to-one correspondence with equivalence classes of exact sequences (∗),
where B′ and B are regarded only as k-algebras. We say in that case that B′

is an extension as k-algebras of the k-algebra B by the B-module B.
This discussion suggests that we consider a more general situation. Let A

be a ring, let B be an A-algebra, and let M be a B-module. We define an
extension of B by M as A-algebras to be an exact sequence

0→M → B′ → B → 0,

where B′ → B is a homomorphism of A-algebras, and M is an ideal in B′ with
M2 = 0. Two such extensions B′, B′′ are equivalent if there is an isomorphism
B′ → B′′ compatible in the exact sequences with the identity maps on B and
M . The trivial extension is given by B′ = B⊕M made into a ring by the rule
(b,m) · (b1,m1) = (bb1, bm1 + b1m).

Theorem 5.1. Let A be a ring, B an A-algebra, and M a B-module. Then
equivalence classes of extensions of B by M as A-algebras are in natural one-
to-one correspondence with elements of the group T 1(B/A,M). The trivial
extension corresponds to the zero element.

Proof. Let A[x]→ B be a surjective map of a polynomial ring over A to B,
let {ei} be a set of generators of the B-module M , and let y = {yi} be a set of
indeterminates with the same index set as {ei}. We consider the polynomial
ring A[x, y], and note that if B′ is any extension of B by M , then one can find
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a surjective ring homomorphism f : A[x, y] → B′, not unique, that makes a
commutative diagram

0→ (y) → A[x, y] → A[x] → 0
↓ ↓ f ↓

0→ M → B′ → B → 0
↓ ↓ ↓
0 0 0

where the two outer vertical arrows are determined by the construction. Here
(y) denotes the ideal in A[x, y] generated by the yi, and the map (y) → M
sends yi to ei.

Now we proceed in two steps. First we classify quotients f : A[x, y]→ B′

that form a diagram as above. Then we ask, for a given extension B′, how
many different ways are there to express B′ as a quotient of A[x, y]? Dividing
out by this ambiguity will give us a description of the set of extensions B′.

For the first step, we complete the above diagram by adding a top row
consisting of the kernels of the vertical arrows:

0→ Q→ I ′ → I → 0.

Giving B′ as a quotient of A[x, y] is equivalent to giving the ideal I ′ in
A[x, y]. Since we have a splitting of the middle row given by the ring inclusion
A[x] → A[x, y], the argument used in the proof of (2.3) shows that the set
of such diagrams is in natural one-to-one correspondence with the group
HomA[x](I,M) = HomB(I/I2,M).

For the second step, we use (4.5), whose proof works over any ring A
in place of k, taking R = A[x], to see that the set of possible choices for
f : A[x, y] → B′ forms a principal homogeneous space under the action of
DerA(A[x],M). Note that because of the inclusion A[x] → A[x, y], any map
f : A[x, y]→ B′ determines a map g : A[x]→ B′ and is uniquely determined
by it.

Now write the long exact sequence of T i functors (3.5) for the three rings
A→ A[x]→ B and the module M . The part that interests us is

T 0(A[x]/A,M)→ T 1(B/A[x],M)→ T 1(B/A,M)→ T 1(A[x]/A,M).

The first term here, by (3.6), is HomA[x](ΩA[x]/A,M), which is just the module
of derivations DerA(A[x],M). The second term, by (3.8), is HomB(I/I2,M).
The fourth term, by (3.7), is 0. Therefore T 1(B/A,M) appears as the cokernel
of a natural map

DerA(A[x],M)→ HomB(I/I2,M).

Under the interpretations above we see that this cokernel is the set of dia-
grams A[x, y] → B′ as above, modulo the ambiguity of choice of the map
A[x, y] → B′, and so T 1(B/A,M) is in one-to-one correspondence with the
set of extensions B′, as required.
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Corollary 5.2. Let k be a field and let B be a k-algebra. Then the set of defor-
mations of B over the dual numbers is in natural one-to-one correspondence
with the group T 1(B/k,B).

Proof. This follows from the theorem and the discussion at the beginning
of this section, which showed that such deformations are in one-to-one corre-
spondence with the k-algebra extensions of B by B.

Next we consider deformations of a nonsingular variety. We use Čech
cohomology of an open covering, knowing that deformations of affine non-
singular varieties are trivial.

Theorem 5.3. Let X be a nonsingular variety over k. Then the deformations
of X over the dual numbers are in natural one-to-one correspondence with
the elements of the group H1(X, TX), where TX = HomX(ΩX/k,OX) is the
tangent sheaf of X.

Proof (cf. [57, III, 9.13.2]). Let X ′ be a deformation of X, and let
U = (Ui) be an open affine covering of X. Over each Ui the induced
deformation U ′

i is trivial by (4.8), or by (4.9) combined with (5.2), so we
can choose an isomorphism ϕi : Ui ×k D

∼→ U ′
i . Then on Uij = Ui ∩ Uj we

get an automorphism ψij = ϕ−1
j ϕi of Uij ×k D, which corresponds to an

element θij ∈ H0(Uij , TX) by (Ex. 5.2). By construction, on Uijk we have
θij + θjk + θki = 0, since composition of automorphisms corresponds to addi-
tion of derivations. Therefore (θij) is a Čech 1-cocycle for the covering U and
the sheaf TX . If we replace the original chosen isomorphisms ϕi : Ui×kD

∼→ U ′
i

by some others ϕ′
i, then ϕ′

i
−1ϕi will be an automorphism of Ui ×k D coming

from a section αi ∈ H0(Ui, TX), and the new θ′ij = θij + αi − αj . So the new
1-cocycle θ′ij differs from θij by a coboundary, and we obtain a well-defined
element θ in the Čech cohomology group Ȟ1(U , TX). Since U is an open affine
covering and TX is a coherent sheaf, this is equal to the usual cohomology
group H1(X, TX). Clearly θ is independent of the covering chosen.

Reversing this process, an element θ ∈ H1(X, TX) is represented on U by
a 1-cocycle θij , and these θij define automorphisms of the trivial deformations
Uij ×k D that can be glued together to make a global deformation X ′ of X.
So we see that the deformations of X over D are given by H1(X, TX).

Example 5.3.1. IfX = P
n
k for n ≥ 1, thenH1(TX) = 0, so every deformation

of X over the dual numbers is trivial. Thus X is an example of a rigid scheme,
by which we mean a scheme all of whose deformations over the dual numbers
are trivial. We have already seen that any affine nonsingular scheme is rigid
(4.8). This result also follows from (5.3), since an affine scheme has no higher
cohomology. We will see examples of singular rigid schemes in (5.5.1) and the
exercises of this section.

One needs to exercise some caution around this notion of rigid scheme,
lest intuition lead one into error. One might think, for example, that a rigid
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scheme has no nontrivial deformations. We will show indeed (Ex. 10.3) that
every deformation over an Artin ring is trivial. However, there can be non-
trivial global deformations of a rigid affine scheme (Ex. 4.9). For an even
more striking example, consider a family Ct of nonsingular plane cubic curves
degenerating to C0, a union of two lines L, M , with M counted twice. Now
pass to the affine plane by removing M . Then we have a family of affine elliptic
curves whose limit is the affine line A

1, which is rigid.
Another intuition might say that a singular rigid scheme cannot be embed-

ded in a flat family whose general member is smooth, i.e., is not smoothable.
This is true, but the proof is not obvious (29.6).

For projective varieties, the situation is somewhat better. If X0 is a rigid
projective scheme, then one can show that nearby fibers in a flat family of
projective schemes are isomorphic to X0 (Ex. 24.7c). If X0 is an affine rigid
scheme with an isolated singularity, the best one can hope for is that nearby
fibers in a flat family have analytically isomorphic singularities (Ex. 18.8).

Example 5.3.2. Let C be a nonsingular projective curve of genus g. Then
by Serre duality H1(TC) is dual to H0(Ω⊗2

C ), which has degree 4g − 4. For
g ≥ 2 this is nonspecial, so by Riemann–Roch, H1(TC) has dimension 3g− 3.

Now, as an application, we will study deformations of cones. Let Y be a
nonsingular subvariety of P = P

n
k , and let X = SpecB be the affine cone

over Y inside A
n+1 = SpecR, where R = k[x0, . . . , xn] is the homogeneous

coordinate ring of P . We wish to study the deformations of X, i.e., the module
T 1

B/k = T 1(B/k,B), in terms of properties of Y . To relate the two we will
compare each of them to the open subset U = X−{x}, where x = (x0, . . . , xn)
is the vertex of the cone.

Theorem 5.4. In the situation above, if depthxB ≥ 2, then there is an exact
sequence

0→ T 1
B/k → H1(U, TU )→ H1(U, TR|U ).

If furthermore, depthxB ≥ 3, then T 1
B/k
∼= H1(U, TU ) and there is an injec-

tion
0→ T 1

B/k →
⊕

ν∈Z

H1(Y, TY (ν)).

Proof. Since U is nonsingular, we have an exact conormal sequence of sheaves

0→ TU → TR|U → NU/R → 0.

We consider the following diagram, where the second row is the cohomology
sequence of this exact sequence of sheaves, and the first row comes from (3.10)
applied to SpecB in SpecR. The vertical arrows are restriction maps from
X to U . Note that each of the modules T 0

B/k, TR ⊗ B,NB/R is the dual of
some B-module. Because of the hypothesis depthxB ≥ 2, these modules are
reflexive, and hence of depth ≥ 2 [63, 1.8, 1.9]. Hence by the exact sequence
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of local cohomology with support at x and the cohomological interpretation
of depth [57, III, Ex. 3.4], the restriction maps are isomorphisms:

0 → T 0
B/k → TR ⊗B → NB/R → T 1

B/k → 0

↓∼= ↓∼= ↓∼=
0 →H0(U, TU ) →H0(U, TR|U ) →H0(U,NU/R) →H1(U, TU ) →H1(U, TR|U ) →· · ·

From this we obtain the first exact sequence of the theorem.
Now suppose that depthxB ≥ 3. Since TR|U is a free OU -sheaf, and

H1(U,OU ) ∼= H2
x(B) = 0 by the depth condition, we obtain T 1

B/k
∼=

H1(U, TU ).
To compare this to Y , we use the exact sequence of relative tangent sheaves

(Ex. 5.3)
0→ OU → TU → π∗TY → 0.

Since depthxB ≥ 3, we have H1(U,OU ) = 0. On the other hand, U → Y
is an affine morphism with fibers that are punctured affine lines A

1 − {0}.
SoH1(U, π∗TY ) ∼=

⊕
ν∈Z

H1(Y, TY (ν)). ThusH1(U, TU ) injects into this latter
group.

Remark 5.4.1. The depth conditions on B can be expressed in terms of Y .
Thus depthxB ≥ 2 is equivalent to saying that Y is projectively normal,
which in turn is equivalent to H0(OP (ν)) → H0(OY (ν)) being surjective for
all ν. And depthxB ≥ 3 if and only if in addition, H1(OY (ν)) = 0 for all ν.

Corollary 5.5. If Y is a nonsingular projectively normal subvariety of P =
P

n
k , and if H1(OY (ν)) = H1(TY (ν)) = 0 for all ν ∈ Z, then the affine cone
X over Y is a rigid scheme.

Proof. Indeed, taking into account (5.4.1), the theorem implies T 1
B/k = 0.

Example 5.5.1. Let Y be the Veronese surface in P
5, which is the 2-uple

embedding of P
2 in P

5. It is easy to see that Y is projectively normal and
that H1(OY (ν)) = 0 for all ν. There is just one twist of the tangent sheaf TP2

that has a nonzero H1, namely H1(P2, TP2(−3)) = k. However, since we are
dealing with the 2-uple embedding, H1(Y, TY (ν)) = H1(P2, TP2(2ν)) for each
ν, and this will be 0 for all ν. Thus the cone over the Veronese surface is rigid.

References for this section. The applications of the T 1 functors to defor-
mations of rings appear in [96]. The deformations of cones are treated in
two papers by Schlessinger [146], [147]. See also [8]. For a further study of
deformations of cones, see §29.

Exercises.

5.1. Show that
(a) A node k[x, y]/(xy) has a 1-dimensional space of deformations over the dual

numbers.
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(b) A cusp k[x, y]/(y2 − x3) has a 2-dimensional space of deformations.
(c) An ordinary double point of a surface k[x, y, z]/(xy−z2) has a 1-dimensional

space of deformations.

5.2. Automorphisms. Examining the proof of (5.1) more carefully, show that
automorphisms of extensions B′ of B by M are given by T 0(B/A,M). Hence if B′

is a deformation of B/k over D as in (5.2), the automorphisms of B′ are given by
T 0(B/k,B), which is the tangent module of B/k.

5.3. (a) Let P = P
n
k , let R = k[x0, . . . , xn] be its homogeneous coordinate ring, and

let V = SpecR−{x}, where x is the closed point (x0, . . . , xn). Using the projection
π : V → P , and comparing the Euler sequences on P and P

n+1, which contains V ,
show that there is an exact sequence

0 → OV → TV → π∗TP → 0.

(b) Now let Y be a nonsingular closed subscheme of P , let X be the affine cone
over Y in SpecR, and let U = X − {x}. Show similarly that there is an exact
sequence

0 → OU → TU → π∗TY → 0.

5.4. Using the criterion of (5.4), show that the cone X in A
6 over the Segre

embedding of P
1 × P

2 in P
5 is rigid.

5.5. Let X ⊆ A
4 be the union of two planes meeting at a point. This can be

regarded as the cone over two skew lines in P
3. Use the method of proof of (5.4)

to show that X is rigid. Hints: Be careful, because in this case, depthxB is only
1! However, two special features of this example save the day. One is that U is a
disjoint union of two punctured affine planes, so that the conormal sequence for U
is split exact. The other is that H1

x(B) = k, and one can show by a direct analysis
of the situation that the composed map H0(U, TU ) → H1

x(TR ⊗ B) is surjective.
A surprising consequence of this is that NB/R has depth 2, even though B only has
depth 1.

5.6. Abstract versus embedded deformations. The question is, when Y is
a closed subscheme of X, can every abstract deformation of Y be realized as an
embedded deformation of Y in X? Cf. (Ex. 10.1) for higher-order deformations, and
§20 for further study of this question.

(a) If Y is affine and X is nonsingular, then every abstract deformation of Y
over the dual numbers can be realized as an embedded deformation.

(b) On the other hand, if C is a nonsingular projective plane curve of degree
d ≥ 5, then there are abstract deformations of C over the dual numbers that cannot
be realized as embedded deformations in P

2.

5.7. Deformations of nonaffine schemes. Let X be a scheme over k, and
let X ′ be a deformation of X over the dual numbers. For each open affine subset
Ui ⊆ X, the restriction of X ′ to Ui is a deformation of Ui, so determines an element
αi in T 1(U,OU ). These glue to make an element α ∈ H0(X, T 1

X), where T 1
X is the

sheaf T 1(X/k,OX). If α is zero, we say that X ′ is locally trivial. Show that the
locally trivial deformations are classified by H1(X, TX). On the other hand, given
an α ∈ H0(T 1

X), show how to construct an element δα in H2(TX) with the property
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that δα = 0 if and only if α comes from a global deformation of X. Thus, if we
denote by Def(X/k,D) the set of global deformations of X over D, there is an exact
sequence

0 → H1(X, TX) → Def(X/k,D) → H0(X, T 1
X)

δ→ H2(X, TX).

(Perhaps some astute reader will recognize this as the exact sequence of terms of
low degree of a suitable spectral sequence.)

5.8. Hilb8(P4)Hilb8(P4)Hilb8(P4) is not irreducible. Consider the Hilbert scheme of zero-dimensional
closed subschemes of P

4
k of length 8. There is one component of dimension 32 that

has a nonsingular open subset corresponding to sets of eight distinct points. We will
exhibit another component containing a nonsingular open subset of dimension 25.

(a) Let R = k[x, y, z, w], let m be a maximal ideal, and let I = V + m3, where
V is a 7-dimensional subvector space of m2/m3. Let B = R/I, and let Z be the
associated closed subscheme of A

4 ⊆ P
4. Show that the set of all such Z, as the

point of its support ranges over P
4, forms an irreducible 25-dimensional subset of

the Hilbert scheme H = Hilb8(P4).
(b) Now look at the particular case

I = (x2, xy, y2, z2, zw,w2, xz − yw).

Show that dimk Hom(I/I2, B) = 25 as follows. First show that any homomorphism
ϕ : I/I2 → B has image contained in mB. Second, observe that homomorphisms
ϕ with image in m2B form a vector space of dimension 21. Third, show that if the
image of ϕ in mB/m2B is nonzero, then ϕ is completely determined, modulo those
ψ mapping I/I2 to m2B, by ϕ(xz−yw), and for this one there is a four-dimensional
vector space of choices.

(c) Conclude that the family of all Z’s described in (a) forms an irreducible
component of H of dimension 25 that is nonsingular at the point studied in (b).
In particular, by reason of dimension, the zero-scheme described in (b) is not in the
closure of the component corresponding to sets of eight distinct points. It is therefore
a nonsmoothable subscheme of P

4.
(d) Show that the image of the natural map Hom(ΩR, B) → Hom(I/I2, B) has

dimension 12, generated by the four homomorphisms that can be described as ∂/∂x,
∂/∂y, ∂/∂z, ∂/∂w, so that T 1(B/k,B) has dimension 13. Thus this singularity is
not rigid.

Note. This is a slight variant of an example discovered by Iarrobino and Emsalem
[72].

5.9. Reduced locally complete intersection curves. (a) Let C be a reduced
locally complete intersection curve in P = P

n, with ideal sheaf I. Then I/I2 is
locally free of rank n− 1 and there is an exact sequence

0 → I/I2 → ΩP ⊗OC → ΩC → 0.

From this, deduce a map

n−1∧
(I/I2) ⊗ΩC → ωP ⊗ C
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and then by tensoring with
∧n−1(I/I2)∨, a map

ϕ : ΩC → ωC ,

where ωC is the dualizing sheaf of C (cf. [57, III.7.11]).
(b) Now suppose C is contained in a nonsingular surface X. Tensoring the exact

sequence
0 → TC/k → TX/k ⊗OC → NC/X → T 1

C/k → 0

with ωX , we get a sequence

0 → TC/k ⊗ ωX → ΩX/k ⊗OC
ψ→ ωC → T 1

C/k ⊗ ωX → 0.

Show that the map ψ factors through the projection of ΩX ⊗ OC to ΩC and the
map ϕ above, so that the cokernel of ϕ is T 1

C ⊗ ωX . Show also that the kernel of ϕ
is the torsion submodule of ΩC , which is isomorphic to T 1∗

C ⊗ ω∨
X , where ∗ denotes

the dual vector space with the appropriate module structure.
(c) Conclude that if C is a reduced locally complete intersection curve in P

n

whose singularities all have embedding dimension 2, then ϕ sits in an exact sequence

0 → R → ΩC
ϕ→ ωC → S → 0,

where S is locally isomorphic to T 1
C and R is locally isomorphic to T 1∗

C .
(d) With C a curve as in (c), let Δ = length T 1

C . Show that the tangent sheaf
TC has degree 2 − 2pa +Δ, where pa is the arithmetic genus of C. Conclude from
Riemann–Roch that if H0(TC) = 0 (which is the case, for example, if C is integral
and Δ < 2pa − 2), then H1(TC), which gives the locally trivial deformations of C
over the dual numbers, has dimension 3pa − 3 − Δ. Taking into account (Ex. 5.7)
show that the total space of (abstract) deformations of C over the dual numbers has
dimension 3pa − 3.

5.10. Deformations of a double line. Let L be a line on a nonsingular cubic
surface X in P

3, and let Y be the scheme associated to the divisor 2L on X. Then
Y is a curve of degree 2, supported on the line L, and there is an exact sequence

0 → OL(1) → OY → OL → 0.

The curve Y is obviously not smoothable in P
3, because it has arithmetic genus

pa = −2, and there are no nonsingular curves of that degree and genus in P
3. The

only nonsingular curves of degree 2 are the conic, with pa = 0, and a disjoint union
of two lines, with pa = −1.

(a) Show that the family of all such double lines in P
3 has dimension 9; also

show that H0(NY/P3) = 9, so these curves correspond to a nonsingular open subset
of an irreducible component of the Hilbert scheme for Hilbert polynomial 2z − 1.

(b) By looking at an affine piece, show that the sheaf T 1
Y is locally isomorphic

to OL. Then, by looking at the sequence

0 → TY → TX ⊗OY → NY/X → T 1
Y → 0

conclude that T 1
Y

∼= OL(−2). It follows that even though there are many local
deformations of Y , the sheaf T 1

Y has no global sections, so by (Ex. 5.7) every global
abstract deformation of Y is locally trivial.
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(c) Now show that TY belongs to an exact sequence

0 → OL(−1) ⊕OL(2) → TY → OL(1) → 0.

Conclude that H1(TY ) = 0, so as an abstract scheme, Y is rigid.

5.11. Use the method of (5.5.1) to show that for any n ≥ 2 and any d ≥ 2 the
cone over the Veronesean d-uple embedding of P

n in P
N is rigid. (Watch out for the

case n = 2, d = 3!)
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Higher-Order Deformations

In Chapter 1 we studied deformations of a structure over the dual numbers.
These are the first-order infinitesimal deformations. In this chapter we discuss
deformations over arbitrary Artin rings, deformations of higher order. A new
feature of these is that having a deformation over one Artin ring, it is not
always possible to extend it to a larger Artin ring: there may be obstructions.
So in each particular case we investigate the obstructions, and when extensions
do exist, try to enumerate them. For closed subschemes, invertible sheaves,
and vector bundles, that is, Situations A, B, C, we do this in Sections 6, 7.
For abstract schemes, Situation D, the results are in Section 10. In Sections 8,
9 we deal with three special cases, namely Cohen–Macaulay subschemes of
codimension 2, locally complete intersection schemes, and Gorenstein sub-
schemes in codimension 3. In each of these cases we can track the deforma-
tions explicitly and show that they are unobstructed. In Section 11 we show
how an obstruction theory affects the local ring of the corresponding para-
meter space, and in Section 12 we apply this to prove a classical bound on
the dimension of the Hilbert scheme of curves in P

3. In Section 13 we describe
one of Mumford’s examples of “pathologies” in algebraic geometry, a family
of nonsingular curves in P

3 whose Hilbert scheme is generically nonreduced.

6. Subschemes and Invertible Sheaves

A general context in which to study higher-order deformations is the following.
Suppose we are given a structure S over a field k. S could be a scheme, or
a closed subscheme of a given scheme, or a vector bundle on a given scheme,
etc. We look for deformations of S over the ring An = k[t]/tn+1. These would
be called nth-order deformations of S. Since it is hard to classify these all at
once, we consider an easier problem. Suppose Sn is a given deformation of
S over An. Then we seek to classify all deformations Sn+1 over An+1 whose
restriction to An is the given deformation Sn. In this case we say that Sn+1

is an extension of Sn over the ring An+1.

R. Hartshorne, Deformation Theory, Graduate Texts in Mathematics 257, 45
DOI 10.1007/978-1-4419-1596-2 3, c© Robin Hartshorne 2010



46 2 Higher-Order Deformations

Typically the answer to such a problem comes in two parts: there is an
obstruction to the existence of Sn+1; then if the obstruction is zero, the set
of extensions Sn+1 is classified by some group. However, it is not a natural
correspondence as in the earlier sections. Rather it works like this: given one
such extension Sn+1, any other S′

n+1 determines an element of a group. We say
that the set of extensions is a principal homogeneous space or torsor under
the action of the group, defined as follows.

Definition. LetG be a group acting on a set S, i.e., there is a mapG×S → S,
written 〈g, s〉 �→ g(s), such that for any g, h ∈ G, (gh)(s) = g(h(s)). We say
that S is a principal homogeneous space or torsor under the action of G if
there exists an element s0 ∈ S such that the mapping g �→ g(s0) is a bijective
mapping of G to S. Note that if there exists one such s0 ∈ S, then the same
is true for any other element s1 ∈ S. Thus S is a torsor under the action of G
if and only if it satisfies the following two conditions:

(1) For every s ∈ S the induced mapping g �→ g(s) is bijective from G to S,
and

(2) S is nonempty.

If condition (1) is satisfied we say that S is a pseudotorsor.
Although it seems natural to discuss deformations over the rings An =

k[t]/tn+1 as described above, it will be useful for later purposes to work in a
slightly more general context.

Notation 6.1. In this chapter we will consider deformation problems over a
sequence

0→ J → C ′ → C → 0,

where C is a local Artin ring with residue field k, C ′ is another local Artin ring
mapping to C, and J is an ideal with mC′J = 0, so that J can be considered
as a k-vector space. (The importance of this hypothesis is that in comparing
deformations over C and C ′, the term on the left depends only on the initial
data of the original object over k.) We suppose that some structure S0 is given
over k. Let S be a deformation of S0 over C, and we seek to classify extensions
of S to C ′. This more general setting includes the earlier one, but also includes
the nonequicharacteristic case, such as Z/pn+1 → Z/pn, where the rings are
not k-algebras for any field k. This will be useful for lifting questions (§22).

Let us consider Situation A, deformations of closed subschemes. Suppose
we are given Y0, a closed subscheme of X0 over a field k. As in (6.1), let X
be a deformation of X0 over C in the sense of §5, and let Y ⊆ X be a closed
subscheme such that Y ×C k = Y0. Further, let X ′ be an extension of X over
C ′, that is, X ′ is flat over C ′ and there is a given closed immersion X ↪→ X ′

inducing an isomorphism X
∼→ X ′ ×C′ C. We seek to classify extensions of Y

over C ′, as closed subschemes, namely those Y ′ ⊆ X ′, flat over C ′, such that
Y ′ ×C′ C = Y .
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Theorem 6.2. In the above situation:

(a) The set of extensions of Y over C ′ in X ′ is a pseudotorsor under the action
of the group H0(Y0,N0 ⊗k J), where N0 is the normal sheaf NY0/X0 .

(b) If extensions of Y over C ′ exist locally on X, then there is an obstruction
α ∈ H1(Y0,N0 ⊗k J) whose vanishing is necessary and sufficient for the
global existence of Y ′. If one extension Y ′ of Y exists, then the set of all
such is a torsor under H0(Y0,N0 ⊗k J).

Remark 6.2.1. In particular, part (b) applies if Y0 in X0 is a local complete
intersection, is Cohen–Macaulay of codimension 2, or is Gorenstein of codi-
mension 3; cf. (8.5), and §9 below. See (10.4) for the contribution of local
obstructions when they are present.

Proof. We will prove this theorem in several stages. First we consider the
affine case X = SpecA, X ′ = SpecA′, Y = SpecB. Then we have a diagram

0 0 0
↓ ↓ ↓

0→ J ⊗C I → I ′ → I → 0
↓ ↓ ↓

0→ J ⊗C A → A′ → A → 0
↓ ↓ ↓

0→ J ⊗C B → B′ → B → 0
↓ ↓ ↓
0 0 0

where all parts except I ′ and B′ are given, and we seek to classify the possible
B′ (resp. I ′) to fill in the diagram. The exactness of the bottom two rows is
equivalent to the flatness of A′ and B′ over C ′ by (2.2). The exactness of the
first column results from flatness of B over C.

Compare this diagram with the diagram preceding (2.3). In that case we
had a splitting A → A′ and so were able to show that the possible diagrams
were in natural one-to-one correspondence with HomB(I,A/I). In the present
case we do not have a splitting. However, we can use a similar line of reasoning
if I ′ and I ′′ are two choices of I ′ to fill in the diagram. Given x ∈ I, lift it to
x′ ∈ I ′ and to x′′ ∈ I ′′. Then x′′ − x′ ∈ A′ and its image in A is zero. Hence
x′′ − x′ ∈ J ⊗C A, and we denote its image in J ⊗C B by ϕ(x). Note that the
choices of x′ and x′′ are not unique. They are defined only up to something
in J ⊗C I, but this goes to 0 in J ⊗C B, so ϕ is a well-defined additive map,
in fact an A-linear homomorphism ϕ ∈ HomA(I, J ⊗C B).

Conversely, given I ′ and given ϕ ∈ HomA(I, J ⊗C B), we define another
ideal I ′′ solving our problem as follows: I ′′ is the set of x′′ ∈ A′ whose image
in A is in I, say x, and such that for any lifting x′ of x to I ′, the image of
x′′ − x′ in J ⊗C B is equal to ϕ(x).

Note finally that if I ′, I ′′, I ′′′ are three choices of I ′, and if ϕ1 is defined by
I ′, I ′′ as above, ϕ2 defined by I ′′, I ′′′, and ϕ3 defined by I ′, I ′′, then ϕ3 = ϕ1 +
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ϕ2. Thus the operation 〈I ′, ϕ〉 �→ I ′′ is an action of the group HomA(I, J⊗CB)
on the set of ideals I ′ solving our problem, and what we have just shown is
that the set of deformations of B over C ′ is a pseudotorsor for this group
action. We have not yet discussed existence, so we cannot assert that it is a
torsor.

Note that HomA(I, J ⊗C B) = HomA(I, J ⊗k B0), since J is a k-vector
space, and this in turn is equal to HomA0(I0, J⊗kB0), which isH0(Y0,N0⊗kJ)
in the affine case. (Here I0, B0 are the restrictions to X0 of I, B.)

To pass from the affine case to the global case, we note that the action
of H0(Y0,N0 ⊗k J) on the set of Y ′, which is defined locally, is a natural
action, and that it glues together on the overlaps to give a global action of
H0(Y0,N0⊗k J) on the set of solutions. The fact of being a pseudotorsor also
globalizes, so we have proved (a) of the theorem.

To prove (b) suppose that local deformations of Y over C ′ exist. In other
words, we assume that there exists an open affine covering U = (Ui) of X such
that on each Ui there exists a deformation Y ′

i of Y ∩ Ui in U ′
i ⊆ X ′. Choose

one such Y ′
i for each i. Then on Uij = Ui∩Uj there are two extensions Y ′

i ∩U ′
ij

and Y ′
j ∩U ′

ij . By the previous part (a) already proved, these define an element
αij ∈ H0(Uij ,N0 ⊗k J). On the intersection Uijk of three open sets, there
are three extensions Y ′

i , Y
′
j , Y

′
k, whose differences define elements αij , αjk, αik,

and since by (a) the set of extensions is a torsor, we have αik = αij + αjk in
H0(Uijk,N0 ⊗k J). So we see that (αij) is a 1-cocycle for the covering U and
the sheaf N0 ⊗k J . Finally, note that this cocycle apparently depends on the
choices of deformations Y ′

i over Ui. If Y ′′
i is another set of such choices, then

Y ′
i and Y ′′

i define an element βi ∈ H0(Ui,N0 ⊗k J), and the new 1-cocycle
(α′′

ij) defined using the Y ′′
i satisfies α′′

ij = αij + βj − βi. So the cohomology
class α ∈ H1(Y,N0 ⊗k J) is well-defined. It depends only on the given Y
over C.

This α is the obstruction to the existence of a global deformation Y ′ of
Y over C ′. Indeed, if Y ′ exists, we can take Y ′

i = Y ′ ∩ U ′
i for each i. Then

αij = 0, so α = 0. Conversely, if α = 0 in H1(Y,N0⊗k J), then it is already 0
in the Čech group Ȟ1(U ,N0 ⊗k J), so the cocycle αij must be a coboundary,
αij = βj − βi. Then using the βi, we modify the choices Y ′

i to new choices
Y ′′

i , which then glue to form a global deformation Y ′. This proves (b).

Example 6.2.2. Let X0 be a nonsingular projective surface over k, and let
Y0 ⊆ X0 be an exceptional curve of the first kind, that is, Y0 is a nonsingular
curve of genus zero, and Y 2

0 = −1 in X0. Then NY0/X0
∼= OY0(−1), so that

H0(NY0/X0) = H1(NY0/X0) = 0. Hence there are no obstructions, and Y0

extends uniquely to any deformation of X0.
Since Y0 can be blown down to a point P on another nonsingular surface

X ′
0, this suggests that deformations of X0 all arise from deformations of X ′

0

and changing the position of P in X ′
0. See (Ex. 10.5) to verify this.

Of course other kinds of exceptional curves may not extend to a deforma-
tion (Ex. 6.7), but if they do extend, the extension will be unique.
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Corollary 6.3. Let Y be a closed subscheme of X = P
n
k . Assume that there

are no local obstructions to deformations of Y , and that H1(Y,NY/X) = 0.
Then the Hilbert scheme H is nonsingular at the point y corresponding to Y .

Proof. According to the infinitesimal lifting property (4.6), to show that H
is nonsingular at Y , it is sufficient to show that for any local Artin ring C
over k and a morphism f : SpecC → H sending the closed point to y, and
for any surjection of local Artin rings C ′ → C, the morphism f lifts to a
morphism g : SpecC ′ → H. If J is the kernel of C ′ → C, then filtering J by
the ideals in miJ , and extending successively, we reduce to the case mJ = 0,
so as to conform with (6.1). Now by the universal property of the Hilbert
scheme (1.1(a)), f corresponds to a deformation of Y in P

n
C over C and the

problem is to extend this to Y ′ in P
n
C′ . By our hypotheses, the theorem applies

to show the existence of Y ′ and hence of g. Hence H is nonsingular at y.

Remark 6.3.1. The hypothesis “no local obstructions to deformations of Y ”
applies if Y is a local complete intersection, or is Cohen–Macaulay in codimen-
sion 2, or is Gorenstein in codimension 3, as we will see in §§8, 9. In particular,
it holds if Y is nonsingular (Ex. 6.1).

Now let us study Situation B, deformations of invertible sheaves. We sup-
pose that we are given a scheme X flat over C and an extension X ′ of X over
C ′, as in (6.1). Let L be a given invertible sheaf on X. We seek to classify
invertible sheaves L′ on X ′ such that L′ ⊗OX

∼= L.

Theorem 6.4. In the above situation:

(a) There is an obstruction δ ∈ H2(J ⊗C OX) whose vanishing is a necessary
and sufficient condition for the existence of L′ on X ′.

(b) If an L′ exists, the group H1(J ⊗C OX) acts transitively on the set of all
isomorphism classes of such L′ on X ′.

(c) The set of isomorphism classes of such L′ is a torsor under the action
of H1(J ⊗C OX) if and only if the natural map H0(O∗

X′) → H0(O∗
X) is

surjective.
(d)A sufficient condition for the property of (c) to hold is that H0(OX0) = k,

where X0 = X ×C k.

Proof. As in the proof of (2.6) the exact sequence

0→ J ⊗OX → OX′ → OX → 0

gives rise to an exact sequence of abelian groups

0→ J ⊗OX → O∗
X′ → O∗

X → 0,

except that this time there is in general no splitting. Taking cohomology we
obtain
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0→ H0(J ⊗OX)→ H0(O∗
X′)→ H0(O∗

X)→ H1(J ⊗OX)

→ H1(O∗
X′)→ H1(O∗

X)→ H2(J ⊗OX)→ · · · .

The invertible sheaf L on X gives an element in H1(O∗
X). Its image δ in

H2(J ⊗OX) is the obstruction, which is 0 if and only if L is the restriction of
an element of H1(O∗

X′), i.e., an invertible sheaf L′ on X ′ with L′ ⊗OX
∼= L.

Clearly H1(J ⊗OX) acts on the set of such L′, but we cannot assert that it
is a torsor unless the previous map H0(O∗

X′)→ H0(O∗
X) is surjective.

Suppose now that H0(OX0) = k. Using induction on the length of C,
one concludes that H0(OX) = C and H0(OX′) = C ′. Since C ′∗ → C∗ is
surjective, the conditions of (c) follow.

Remark 6.4.1. One can interpret H0(O∗
X) as the group of automorphisms

of the invertible sheaf L. Thus the condition of (c) can be written AutL′ →
AutL is surjective. This type of condition on automorphisms appears fre-
quently in deformation questions (cf. Chapter 3).

Remark 6.4.2. For an example of a line bundle on X that does not lift to
X ′, see (Ex. 6.7).

References for this section. The obstructions to deforming a subscheme
(6.2) and (6.3) appear in [45, exposé 221, 5.2]. The obstruction to deforming
a line bundle (6.4) appears in [45, exposé 236, 2.10].

Exercises.

6.1. Let Y be a closed subscheme of X, where both Y and X are nonsingular and
affine over k. Show that there are no obstructions to deforming Y as a subscheme
of X. Remark: This will follow from (9.2), since Y is a local complete intersection
in X, but see whether you can prove it directly using results from §4.

6.2. Plane curves. Let C be a curve in P
2
k. Show that H1(NC) = 0, confirming

that the Hilbert scheme is nonsingular (Ex. 1.1).

6.3. Let C be a nonsingular curve of degree d and genus g in P
n
k that is non-

special, i.e., H1(OC(1)) = 0. Show that the Hilbert scheme is nonsingular at the
corresponding point. This applies whenever d > 2g − 2. Note also that in P

3, there
exist nonspecial curves for any d ≥ g + 3 [57, IV, 6.2].

6.4. Curves on a quadric surface. Let C be a nonsingular curve of bidegree
(a, b) on a quadric surface Q in P

3
k; cf. (Ex. 1.2).

(a) Show that H1(NC/Q) = 0 for any a, b. Hence H1(NC) ∼= H1(NQ|C) =
H1(OC(2)).

(b) For a = 1, 2, or 3, show thatH1(OC(2)) = 0, so thatH1(NC) = 0 and the Hilbert
scheme of curves in P

3
k is smooth at that point, if dimension h0(NC) = 4d.

(c) However, if a, b ≥ 4, show that H1(NC) �= 0. Thus the condition of (6.4) is not
necessary for the Hilbert scheme to be smooth, as it is for these curves (Ex. 1.2).
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(d) Now suppose a = 1 or 2 and b ≥ 4. Show that the dimension of the family C
of all curves C of bidegree (a, b) on quadric surfaces Q is 2b+ 10 for a = 1 and
3b+ 11 for a = 2, and that these numbers are strictly less than 4d.

(e) Conclude that the family C of (d) above is a proper closed subset of an irreducible
component C′ of the Hilbert scheme that is smooth of dimension 4d at all points
of C.

6.5. For an example of the opposite kind to (Ex. 6.4c), consider Y = SpecB,
where B = k[x, y, z]/m2, and m = (x, y, z), as a subscheme of P

3
k.

(a) Show that Y is a zero-dimensional scheme of length 4 that is in the closure of
the irreducible component of the Hilbert scheme H = Hilb4(P3) corresponding
to sets of four distinct points. That component has dimension 12.

(b) Show that H0(NY ) has dimension 18, so that Y corresponds to a singular point
of the Hilbert scheme (2.5). However, H1(NY ) = 0, since Y is a scheme of
dimension zero. We conclude from (6.4) that there must be local obstructions to
deforming Y .

See [160, Ch. 4] for a detailed analysis of the abstract deformation space of this
singularity.

6.6. Show that in (6.4) if instead of considering isomorphism classes of L′ on X ′

whose restriction to X is isomorphic to L, we consider the set of deformations of L
overX ′, that is, pairs L′, f where f : L′ → L is a morphism inducing an isomorphism
L′⊗OX′ OX

∼→ L, then the set of equivalence classes of such deformations (provided
they exist) is always a torsor under the action of H1(J ⊗C OX).

6.7. Let X be an integral projective scheme with an invertible sheaf L having a
section s whose zero set is a divisor Y ⊆ X. Let X ′ be a deformation of X over the
dual numbers.

(a) Generalize the method of (Ex. 2.5) to show that any deformation of Y to a closed
subscheme Y ′ of X ′ gives rise to a deformation L′ of L over X ′. Conversely,
however, a deformation of L to L′ may not correspond to any deformation of Y .

(b) Extend the exact sequence of (Ex. 2.5) to obtain

· · · → H1(L) → H1(LY )
δ→ H2(OX) → · · · ,

where we can interpret H1(LY ) as containing the obstruction to deforming Y to
a subscheme Y ′ ⊆ X ′, and δ of that obstruction is the obstruction to extending
L to an invertible sheaf L′ on X ′.

(c) For a particular example, let X be the quartic surface given by f = x4 + y4 +
xz3 + yw3 in P

3
k. Show that X is a nonsingular surface containing the line Y :

x = y = 0, and let L = OX(Y ) be the corresponding invertible sheaf. Consider
the deformation X ′ of X over the dual numbers k[t]/t2 given by f ′ = f + tz2w2.
Show by a direct calculation that Y does not extend to X ′. Hint: The inclusion
Y ↪→ X corresponds to the ring homomorphism

k[x, y, z, w]/(f) → k[z, w]

that sends x and y to zero. Show that there is no ring homomorphism

k[x, y, z, w, t]/(f ′, t2) → k[z, w, t]/(t2)

restricting to the previous one when t = 0.
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(d) Show that H1(X,L) = 0 and conclude that L does not extend to an invertible
sheaf on X ′.

6.8. Hilbert-flag schemes. Let Z be a fixed projective scheme over k (usually
Z = P

n
k ). Let Y ⊆ X be two closed subschemes of Z, with Hilbert polynomials P ,

Q, respectively. Then there is a projective scheme H = HilbP,Q, called the Hilbert-
flag scheme of the pair Y ⊆ X, parametrizing all such pairs of closed subschemes
of Z having Hilbert polynomials P and Q. It has properties analogous to the usual
Hilbert scheme (1.1a), namely, there are universal families V ⊆W in Z×H, flat over
H, such that the closed fibers over H are all pairs Y ⊆ X as above. Furthermore,
H is universal in the sense that given any families Y ′ ⊆ X ′ ⊆ Z × T , flat over T ,
with the same Hilbert polynomials, there exists a unique morphism T → H such
that Y ′ and X ′ are obtained by base extension from V and W . Since you have
already accepted, dear reader, the existence of the Hilbert scheme, perhaps you will
also accept without further question the existence of the Hilbert-flag scheme. For
example, you can think of it as the relative Hilbert scheme of subschemes Y in the
universal family of the Hilbert scheme of all X’s (24.7). Or, you can refer to [152,
§4.5] for more details.

(a) Assume that X is a local complete intersection, and that Y is a local complete
intersection in X, so that the normal sheaves NY , NX , and NY/X are locally
free. By considering the normal sheaf sequence

0 → NY/X → NY → NX ⊗OY → 0

and the restriction map NX → NX ⊗ OY , show that the Zariski tangent space
TH to H at the point Y ⊆ X is the fibered product of H0(NX) and H0(NY )
over H0(NX ⊗OY ).

(b) There are two successive obstructions to deforming the pair Y ⊆ X. First, the
obstruction to deforming X, in H1(NX). Second, having chosen a deformation
of X, an obstruction in H1(NY/X) to deforming Y in that deformation of X.
This information is summarized in the diagram

TH → H0(NX)
↓ ↓

0 →H0(NY/X) → H0(NY ) → H0(NX ⊗OY ) → H1(NY/X).

(c) There are forgetful morphisms from the Hilbert-flag scheme H = HilbP,Q to the
Hilbert schemes HilbP parametrizing the Y ’s and to HilbQ parametrizing the
X’s.

6.9. Lines in cubic surfaces. Consider the Hilbert-flag scheme H{L,X} of lines
L in nonsingular cubic surfaces X in P

3
k.

(a) In this case, NL,X
∼= OL(−1), so H0(NL,X) = H1(NL,X) = 0. Conclude that

the natural map TH → H0(NX) is an isomorphism.
(b) Considering the forgetful morphism of H{L,X} to H{L}, the Hilbert scheme

of lines in P
3, show that the latter is smooth of dimension 4, the fibers of the

morphism are projective spaces of dimension 15, so that H{L,X} is smooth of
dimension 19. Since H{X} = P

19 is also smooth of dimension 19, conclude that
the morphism H{L,X} → H{X} is étale over a point corresponding to X. Thus
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a line extends uniquely to any deformation of X. (Knowing the structure of lines
on the cubic surface [57, V, §4], we see that this is a finite étale morphism of
degree 27 over the space of nonsingular cubic surfaces.)

6.10. Lines on quartic surfaces. We interpret the example of (Ex. 6.7) in terms
of Hilbert-flag schemes. Let L be a line in a nonsingular quartic surface X in P

3.

(a) Show that in this case there is a nontrivial obstruction in H1(NL/X), so that
while H0(NX) has dimension 34, the tangent space T to the Hilbert-flag scheme
H{L,X} has only dimension 33 at the corresponding point.

(b) Considering the projection to H{L}, show that H{L,X} is smooth of dimen-
sion 33.

(c) Conclude that the morphism H{L,X} to H{X} is not surjective. On the con-
trary, its image is a subvariety of dimension 33 inside H{X} ∼= P

34. Thus we
expect that for some deformations of X, the line will not extend, and (Ex. 6.7)
above gave a particular example of this. For more about deforming curves on
quartic surfaces, see (20.6).

7. Vector Bundles and Coherent Sheaves

Here we study Situation C, deformations of vector bundles, and more generally
of coherent sheaves. Let X0 be a scheme over k, and let F0 be a coherent sheaf
on X0. If X is a deformation of X0 over a local Artin ring C, by a deformation
of F0 over X we mean a coherent sheaf F on X, flat over C, together with a
map F → F0 such that the induced map F⊗OX

OX0 → F0 is an isomorphism.
We have seen (2.7) that if C is the ring of dual numbers D, and X = X0×kD
is the trivial deformation of X0, then such deformations F always exist, and
they are classified by Ext1X0

(F0,F0).
Now we consider the more general situation of notation (6.1). Suppose

we are given X0,F0,X,F as above, and further suppose we are given an
extension X ′ of X over C ′. We ask for an extension F ′ of F over C ′, that is, a
coherent sheaf F ′ on X ′, flat over C ′, together with a map F ′ → F inducing
an isomorphism F ′ ⊗C′ C → F .

First we treat the case of a vector bundle, i.e., a locally free sheaf F0 on
X0, in which case F and F ′ will also be locally free (Ex. 7.1).

Theorem 7.1. Let X,F be as above, and assume that F0 is locally free on X0.
Let A0 = Hom(F0,F0) be the sheaf of endomorphisms of F0 (also sometimes
written EndF0).

(a) If F ′ is an extension of F over X ′, then the group Aut(F ′/F) of auto-
morphisms of F ′ inducing the identity automorphism of F is isomorphic
to H0(X0,A0 ⊗k J).

(b)Given F on X, there is an obstruction in H2(X0,A0⊗kJ) whose vanishing
is a necessary and sufficient condition for the existence of an extension F ′

of F over X ′.
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(c) If an extension F ′ of F over X ′ exists, then the set of all such is a torsor
under the action of H1(X0,A0 ⊗k J).

Proof. (a) If F ′ is an extension of F , because of flatness there is an exact
sequence

0→ J ⊗k F0 → F ′ → F → 0.

If σ ∈ Aut(F ′/F), then σ − id maps F ′ to J ⊗k F0, and this map factors
through the given maps π : F ′ → F → F0, thus giving a map of F0 to
J ⊗k F0. Conversely, if τ : F0 → J ⊗k F0 is such a map, then id +τπ is an
automorphism of F ′ over F . Thus Aut(F ′/F) = H0(X0,A0⊗k J). Note that
this part of the proof does not use the hypothesis F0 locally free.

(b) Given F on X, choose a covering of X0 by open sets Ui on which
F is free. Let F ′

i be free on X ′ over Ui, and F ′
i → F|Ui

the natural map.
Since the F ′

i are free, we can choose isomorphisms γij : F ′
i |Uij

→ F ′
j |Uij

for each Uij = Ui ∩ Uj . On a triple intersection Uijk, the composition δijk =
γ−1

ik γjkγij is an automorphism of F ′
i |Uijk

, and so by (a) above gives an element
of H0(Uijk,A0⊗k J). These form a Čech 2-cocycle for the covering U = {Ui},
and so we get an element δ ∈ H2(X0,A0 ⊗k J). If δ = 0, then we can adjust
the isomorphisms γij so that they agree on Uijk, and then we can glue the
extensions F ′

i to get a global extension F ′ of F over X ′. Conversely, if F ′

exists, it is obvious that δ = 0. So δ ∈ H2(X0,A0 ⊗k J) is the obstruction to
the existence of F ′.

(c) Let F ′ and F ′′ be two extensions of F over X ′. Since they are locally
free, we can choose a covering U = {Ui} of X and isomorphisms γi : F ′|Ui

→
F ′′|Ui

for each i. On the intersection Uij we find that δij = γ−1
j γi is an

automorphism of F ′|Uij
and so determines an element of H0(Uij ,A0 ⊗k J).

These form a Čech 1-cocycle, and so we get an element δ ∈ H1(X0,A0⊗k J).
This element is zero if and only if the γi can be adjusted to agree on the
overlaps and thus glue to give an isomorphism of F ′ and F ′′ over F . By fixing
one F ′ then, we see that the set of extensions F ′, if nonempty, is a torsor
under the action of H1(X0,A0 ⊗k J).

Next we consider the “embedded” version of this problem, which
Grothendieck calls the Quot functor. Let X0,F0,X,X

′ be as before, but fix a
locally free sheaf E0 on X0 of which F0 is a quotient, fix a deformation E ′ of E0
over X ′, and let E = E ′⊗OX′ OX . A deformation of the quotient E0 → F0 → 0
over X is a deformation F of F0 on X, together with a surjection E → F → 0
compatible with the maps E → E0 and F → F0. For simplicity we will assume
that the homological dimension of F0 (noted hdF0) is at most 1, which in this
case simply means that Q0 = ker(E0 → F0) is locally free. This ensures that
deformations exist locally, because then Q0 can be lifted locally to a locally
free sheaf Q on X; and then lifting the map Q0 → E0 any way locally to a
map Q→ E will give a quotient F , flat over C, locally on X, as required.

Theorem 7.2. Given X0, E0 → F0 → 0 in the situation as above, assuming
E0 locally free, and hdF0 ≤ 1, we have:
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(a) There is an obstruction in H1(X0, J ⊗k Hom(Q0,F0)) whose vanishing
is a necessary and sufficient condition for the existence of an extension
E ′ → F ′ → 0 of E → F → 0 on X.

(b) If such extensions E ′ → F ′ → 0 exist, then the set of all such is a principal
homogeneous space under the action of H0(X0, J ⊗k Hom(Q0,F0)).

Proof. (a) Given E → F → 0, because of the hypothesis hdF0 ≤ 1, the
kernel Q will be locally free. Therefore on a small open set Ui it can be lifted
to a locally free subsheaf Q′

i of E ′, and we let F ′
i be the quotient. Then on the

open set Ui we have locally (suppressing subscripts Ui) a diagram

0 0 0
↓ ↓ ↓

0 → J ⊗k Q0 → Q′
i → Q → 0

↓ ↓ ↓
0 → J ⊗k E0 → E ′ → E → 0

↓ ↓ ↓
0 → J ⊗k F0 → F ′

i → F → 0
↓ ↓ ↓
0 0 0

Now on Uij we have two liftings Q′
i and Q′

j (restricted to Uij). Take a
local section x of Q. Lift it to sections x′ ∈ Q′

i and x′′ ∈ Q′
j . The difference

x′′ − x′ is then a local section of E ′ that becomes zero in E , hence lands in
J ⊗k E0. Let its image in J ⊗k F0 be y. In this way we define an element γij ∈
H0(Uij , J ⊗k Hom(Q0,F0)), since the map defined from Q factors through
Q0. The γij define an element γ ∈ H1(X0, J⊗kHom(Q0,F0)). Now the usual
argument shows that γ = 0 if and only if the Q′

i can be modified so as to
patch together and thus define a global quotient F ′ of E ′.

(b) A similar argument shows that if one F ′ exists, then the set of all such
is a torsor under the action of H0(X0, J ⊗k Hom(Q0,F0)).

Remark 7.2.1. The hypothesis hdF0 ≤ 1 was used only to ensure the local
existence of extensions. In the special case E0 = OX0 , the sheaf F0 is simply
the structure sheaf of a closed subscheme Y0 ⊆ X0, and Hom(Q0,F0) =
Hom(IY0 ,OY0) = NY0/X0 , so we get the same result as in (6.3).

Now, armed with our discussion of the embedded case, we will tackle a
more difficult case of the abstract deformation problem.

Theorem 7.3. In the same situation as (7.1), instead of assuming F0 locally
free, we will assume hdF0 ≤ 1 and X ′ projective. Then:

(a) If an extension F ′ of F over X ′ exists, then Aut(F ′/F) = J ⊗k

Ext0X0
(F0,F0).

(b)Given F , there is an obstruction in J ⊗k Ext2X0
(F0,F0) to the existence

of F ′.
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(c) If an F ′ exists, then the set of all such is a torsor under the action of
J ⊗k Ext1X0

(F0,F0).

Proof. (a) The same as (7.1), since that step did not use the hypothesis F0

locally free, noting that Ext0(F0,F0) = H0(X0, EndF0).
(b) LetOX′(1) be an ample invertible sheaf onX ′, with restrictionsOX(1),

OX0(1) to X and X0. Given F on X, for any a� 0 we can find a surjection
E = OX(−a)q → F → 0 for some q, and this E lifts to E ′ = OX′(−a)q on X ′.

Note that Exti(E0,F0) ∼= Hi(X0,F0(a))q. So taking a� 0, we may assume
that these groups are zero for i > 0. (Here we use Serre’s vanishing theo-
rem on the projective scheme X0.) On the other hand, since hdF0 ≤ 1,
we see that Q0 is locally free, so that Exti(Q0,F0) = 0 for i > 0, and hence
Ext1(Q0,F0) ∼= H1(X0,Hom(Q0,F0)). Considering the exact sequence of Ext
for homomorphisms of the sequence

0→ Q0 → E0 → F0 → 0

into F0, we obtain Ext1(Q0,F0) ∼= Ext2(F0,F0).
Thus the obstruction δ ∈ H1(X0, J ⊗k Hom(Q0,F0)) of (7.2) gives us an

element δ ∈ J ⊗k Ext2(F0,F0). If this element is zero, then an extension F ′

of F in the embedded sense exists, and we just forget the embedding.
Conversely, if F ′ exists, we could have chosen a large enough that F ′ is a

quotient of E ′, and this shows that δ = 0.
(c) Given any two deformations F ′,F ′′, we can again choose a large enough

that both of them appear as quotients of E ′. The embedded deformations
are classified by J ⊗k Hom(Q0,F0), and the ambiguity of the quotient map
E ′ → F ′ is resolved by J⊗kHom(E0,F0). Then the long exact sequence of Ext’s
shows us that the (abstract) extensions F ′ are classified by J⊗k Ext1(F0,F0).

Remark 7.3.1. If F0 is locally free, this gives the same result as (7.1), because
in that case Exti(F0,F0) ∼= Hi(Hom(F0,F0)).

Reference. The Quot functor appears in parallel with the Hilbert scheme in
[45, exposé 221].

Exercises.

7.1. Let C be a local Artin ring with residue field k. Let X be a scheme flat over
C, and let X0 = X ×C k. If F is a coherent sheaf on X that is flat over C, and if
F0 = F ⊗OX OX0 is locally free on X0, show that F is locally free on X.

7.2. A vector bundle E on a projective variety X is simple if the only endomor-
phisms are scalars, i.e., H0(End E) = k. If X is a nonsingular curve of genus g, and E
is a simple vector bundle of degree d and rank r, show that there are no obstructions
to deforming E , and that h1(End E) = r2(g − 1) + 1.

7.3. For the null-correlation bundle of (Ex. 2.6c), show that h2(End E) = 0, so
there are no obstructions to deforming E .
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7.4. With a little more homological algebra, extend the result of (7.3) to arbitrary
coherent sheaves. For simplicity, let’s look at the affine case. Let X ′ = SpecB′ be
flat over C′, and let B = B′ ⊗C′ C and B0 = B ⊗C k, so that there is an exact
sequence

0 → J ⊗k B0 → B′ → B → 0.

Let M be a B-module, flat over C. We want to study possible B′-modules M ′,
flat over C′, with maps M ′ → M inducing an isomorphism M ′ ⊗C′ C

∼→ M . Let
L• →M → 0 be a resolution of M by a complex of free B-modules.

(a) Show that to find M ′ it is sufficient to find a complex L′
• of free B′-modules

such that L′
• ⊗B′ B ∼= L• and there is an exact sequence of complexes

0 → J ⊗k L• → L′
• → L• → 0.

In that case L′
• will be exact except at the last place, and h0(L

′
•) = M ′ will be

flat over B′ and satisfy M ′ ⊗B′ B ∼= M .
(b) Now study the problem of defining the maps in the complex L′

• and thus show
that there is an obstruction in J⊗kExt2B0(M0,M0) for their existence, and if they
exist, the corresponding extensions M ′ are classified by J ⊗k Ext1B0(M0,M0).

7.5. Deformations of dual modules. Let A0 be a Gorenstein local k-algebra
with residue field k, and let M0 be a Cohen–Macaulay module over A0 (that is,
depth M0 = dimA0). Let A be a deformation of A0 over an Artin ring C, i.e.,
A flat over C together with a homomorphism A → A0 inducing an isomorphism
A ⊗C k ∼→ A0, and let M be a flat deformation of M0 over A. In this exercise we
will show that M∨ = HomA(M,A) is a deformation of M∨

0 = HomA0(M0, A0).
This result will be used later in studying deformations of linked schemes (Ex. 9.3,
Ex. 9.4).

(a) The first step is to show that forming dual modules commutes with base exten-
sion to quotient rings of C. For this purpose, consider an exact sequence

0 → k → C′ → C′′ → 0,

where C′ and C′′ are quotients of C. Tensoring with M∨ and taking Hom of M
into the sequence

0 → A0 → A′ → A′′ → 0,

where A′ and A′′ are the restrictions of A to C′ and C′′, we obtain a diagram

M∨ ⊗C k δ→ M∨ ⊗C C′ → M∨ ⊗C C′′ → 0
↓ α ↓ β ↓ γ

0 → HomA(M,A0) → HomA(M,A′) → Hom(M,A′′) → Ext1A(M,A0).

(b) Use the flatness of M to show that Ext1A(M,A0) = Ext1A0(M0, A0). Then use
the hypothesis M0 Cohen–Macaulay to show that this Ext group is zero.

(c) Now use descending induction on length C′, starting with C′ = C, for which
β is an isomorphism, to show that γ, and hence β, are surjective for all C′.
When C′′ = k, we find that α is also surjective. Then make another descending
induction, using surjectivity of α, to show that γ, and hence β, are isomorphisms
for all C′. In particular α is an isomorphism, so δ is injective.
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(d) Use ascending induction on length C′ now to show, using (2.2), that M∨ ⊗ C′

is flat over C′. In particular, M∨ is flat over C and M∨ ⊗C k ∼= M∨
0 , so M∨ is

a deformation of M∨
0 .

(e) As an extra dividend, show that M is reflexive, i.e., the natural map M →M∨∨

is an isomorphism. Indeed, since M0 is Cohen–Macaulay, it is reflexive over A0

[63, 1.9] and its dual M∨
0 is also Cohen–Macaulay [63, 1.14]. Thus M∨ satisfies

the same hypotheses as M , so M∨∨ is also flat and M∨∨ ⊗C k ∼= M∨∨
0 . Now use

flatness and reflexivity of M0 to show that M is reflexive (cf. (Ex. 4.2)).
(f) Finally, show also that Ext1A(M,A) = 0. Hint: Consider an exact sequence 0 →

N → L → M → 0 with L free, compare ·∨ ⊗ k and (· ⊗ k)∨ applied to this
sequence, and use (b) above.

8. Cohen–Macaulay in Codimension Two

We have seen that nonsingular varieties have no nontrivial local deformations
(4.8). So we often consider deformations of a closed subscheme of a given
nonsingular variety, so-called embedded deformations. One case we can handle
well is the case of a subscheme of codimension two that is Cohen–Macaulay,
meaning that all its local rings are Cohen–Macaulay rings. A local ring B is
a Cohen–Macaulay ring if depth B = dimB. In this case there is a structure
theorem that allows us to track the deformations nicely. We will see that
a codimension-two Cohen–Macaulay scheme is locally defined by the r × r
minors of an r×(r+1) matrix of functions, and that deforming the subscheme
corresponds to deforming the entries of the matrix.

In this section we work over an algebraically closed base field k, so that a
scheme X is smooth if and only if it is nonsingular. This is also equivalent to
saying that all its local rings are regular local rings; cf. §4.

We begin with the structure theorem for a codimension 2 Cohen–Macaulay
quotient of a regular local ring. This result is well known, but we include its
proof, since we will use some of the same ideas in subsequent proofs.

Theorem 8.1 (Hilbert, Burch). Let A be a regular local ring of dimension
n. Let B = A/I be a Cohen–Macaulay quotient of codimension 2. Then there
is an r × (r + 1) matrix ϕ of elements of A whose r × r minors f1, . . . , fr+1

minimally generate the ideal I, and there is a resolution

0→ Ar ϕ→ Ar+1 f→ A→ B → 0

of B over A.

Proof. We make use of the theorem that if M is a finitely generated module
over a regular local ring A, then depth M + hdM = n, where hdM is the
homological dimension of n [104, 19.1]. Thus hdB = 2 as an A-module. If we
take a minimal set of generators a1, . . . , ar+1 for I, we get a resolution

0→ Ar ϕ→ Ar+1 α→ A→ B → 0, (1)
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where ϕ is an r×(r+1) matrix of elements ϕij in A, and α is the map defined
by a1, . . . , ar+1. Let fi be (−1)i times the determinant of the ith r× r minor
of the matrix ϕ, and let f : Ar+1 → A be defined by the fi. Then we obtain
a complex

Ar ϕ→ Ar+1 f→ A, (2)

because evaluating the product f ◦ ϕ amounts to taking determinants of
(r+ 1)× (r+ 1) matrices with a repeated column; hence the product is zero.

We will show that the map f is the same as α, up to a unit in A. Looking
at the generic point of SpecA, i.e., tensoring with the quotient field K of
A, since ϕ is injective, it has rank r, and at least one of its r × r minors is
nonzero. Thus the map f is nonzero. Then looking at the ranks of the modules
in the complex (2), we see that the homology in the middle must have rank 0.
But from (1) we know that coker ϕ has no torsion, hence (2) is exact in the
middle. Therefore the ideal I = (a1, . . . , ar+1) and the ideal (f1, . . . , fr+1) are
isomorphic as A-modules.

Since B has codimension 2, if we look at a point of codimension 1 in
SpecA, the resolution (1) is split exact, so one of the fi’s is a unit. Hence
the support of A/(f1, . . . , fr+1) is also in codimension ≥ 2. An isomorphism
between ideals of A is given by multiplication by some nonzero element of A.
Since both I and (f1, . . . , fr+1) define subsets of codimension 2, this element
must be a unit in A. So, the ideal I is equal to (f1, . . . , fr+1). Thus we have
proved the theorem.

Suppose now that X is a smooth affine scheme over a field k, and that
Y ⊆ X is a closed subscheme of codimension 2 that is Cohen–Macaulay.
We cannot expect that Y should be globally defined by minors of a matrix of
functions on X, but we can accomplish this on small open affines.

Proposition 8.2. Let X be a smooth scheme over a field k, and let Y ⊆ X be
a closed Cohen–Macaulay subscheme of codimension 2. Then for each point
y ∈ Y there is an open affine neighborhood U of y in X and there is a matrix
ϕ of regular functions on U such that the maximal minors fi of ϕ generate
the ideal of Y ∩ U and there is a resolution

0→ Or
U

ϕ→ Or+1
U

f→ OU → OY ∩U → 0.

Proof. We apply (8.1) to the local ring Oy,X and its quotient Oy,Y . This
gives a matrix ϕ of elements of Oy,X . These elements are all defined on some
open affine neighborhood U of y and so determine a complex

Or
U

ϕ→ Or+1
U

f→ OU .

This complex is exact at y, hence also in a neighborhood of y. The elements
fi generate the ideal of Y at y, hence also in a neighborhood. So by shrinking
U to a smaller affine neighborhood, we obtain the result.
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Our next task is to study deformations of codimension 2 Cohen–Macaulay
subschemes. We will be looking now at rings over an Artin ring as base, and
we put conditions on them by specifying that they should be flat over the
Artin ring and have desired properties along the closed fiber. We will see that
the same structure theorem persists in this situation, so that we can always
extend deformations of codimension 2 Cohen–Macaulay subschemes in this
local setting, by lifting the elements of the matrix ϕ.

Here is the situation. Using the notation of (6.1), we have 0 → J →
C ′ → C → 0, where C ′ and C are local Artin rings with residue field k, and
mJ = 0. Suppose we are given A′, a finite type C ′-algebra, flat over C ′. Let
A = A′ ⊗C′ C and let A0 = A′ ⊗C′ k. We assume that A0 is smooth over k.
Suppose also that we are given B = A/I flat over C, and let B0 = B ⊗C k.
We assume that B0 admits a resolution as in (8.2), i.e.,

0→ Ar
0

ϕ0→ Ar+1
0

f0→ A0 → B0 → 0,

where f0 is defined by the r × r minors of ϕ0.

Theorem 8.3 (Schaps [144]). In the above situation we have:

(a) There is an r × (r + 1) matrix ϕ of elements of A whose r × r minors fi

generate I and give a resolution

0→ Ar ϕ→ Ar+1 f→ A→ B → 0.

(b) If ϕ′ is any lifting of the matrix ϕ to elements of A′ and the f ′i are its
minors, then the sequence

0→ A′r ϕ′
→ A′r+1 f ′

→ A′ → B′ → 0

is exact and defines a quotient B′, flat over C ′, and B′ ⊗C′ C = B.
(c) Any lifting of B, i.e., a quotient B′ = A′/I ′, with B′ flat over C ′ and

B′ ⊗C′ C = B arises by lifting the matrix ϕ, as in (b).

Proof. We start with the proof of (b), assuming (a). Let ϕ′ be any lifting of
ϕ. Then we can consider the complex

L′
• : A′r ϕ′

→ A′r+1 f ′
→ A′.

This is a complex for the same reason as given in the proof of (8.1) above—
composition of ϕ′ and f ′ amounts to evaluating determinants with a repeated
column.

Since A′ is flat over C ′, we can tensor with the exact sequence

0→ J → C ′ → C → 0
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and obtain an exact sequence of complexes

0→ L′
• ⊗ J → L′

• → L′
• ⊗ C → 0. (3)

Then, since ϕ′ is a lifting of ϕ, the complex L′
• ⊗ C is just the complex that

appears in (a), namely

L• : Ar ϕ→ Ar+1 f→ A,

and L′
• ⊗C′ J = L• ⊗C J .

Because we are assuming (a) for the moment, L• is exact, with cokernel
B. Since B is flat over C, the complex L•⊗C J is exact with cokernel B⊗C J .
Now the long exact sequence of homology of the sequence of complexes (3)
shows that L′

• is exact. We call its cokernel B′:

0→ A′r ϕ′
→ A′r+1 f ′

→ A′ → B′ → 0. (4)

The homology sequence of (3) also shows that B′ belongs to an exact sequence

0→ B ⊗C J → B′ → B → 0. (5)

Since L′
•⊗C′C = L•, we find that B′⊗C′C = B. Now by the local criterion

of flatness (2.2), B′ is flat over C ′, as required. This completes the proof of
(b), assuming (a).

Next we prove (c), assuming (a) and (b). Let B′ = A′/I ′ be a lifting of B.
Lift the elements fi ∈ I to gi ∈ I ′. By Nakayama’s lemma, these will generate
I ′, so we can write a resolution, with kernel M ,

0→M → A′r+1 g→ A′ → B′ → 0.

Since B′ is flat over C ′, so is M . And since B′ lifts B and the gi lift fi,
M ⊗C′ C ∼= Ar. Hence M is free, equal to A′r, so we get a resolution

0→ A′r ϕ′
→ A′r+1 g→ A′ → B′ → 0

for a suitable matrix ϕ′ lifting ϕ. But from (b) we also have

0→ A′r ϕ′
→ A′r+1 f ′

→ A′ → B′′ → 0,

where B′′ is another lifting of B. We must show B′ = B′′. First we need a
lemma.

Lemma 8.4. Let A be a C-algebra flat over C, with A ⊗C k normal. Let
Z ⊆ X = SpecA be a subset of codimension ≥ 2. Then H0(X −Z,OX) = A.

Proof. By induction on length C, the case of length 1 being known, since
then A is normal. The result follows inductively, using the sheaf sequence
associated to the exact sequence of modules
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0→ A′ ⊗C′ J → A′ → A′ ⊗C′ C → 0.

To complete the proof of (c), we note from the sequences above that
the ideals I ′ = (g1, . . . , gr+1) and I ′′ = (f ′1, . . . , f

′
r+1) are isomorphic as

A′-modules. Let X = SpecA′ and Z = SuppB (which is also the support
of B′ and B′′). Restricting our isomorphism to X − Z gives a section of OX ,
which by the lemma, is an element of A′. Since both B′ and B′′ have codimen-
sion 2, it must be a unit. So, up to change of basis, the gi = f ′i as required.

Finally, to prove (a), we use induction on the length of C ′ and use (c) at
each step, starting from the case length 1, which we took as a hypothesis.
Note that the induction step for (a) depends on (c) from the previous step,
which in turn depends on (a) and (b) from the previous step.

Remark 8.4.1. Since we can always lift the deformations in this local affine
case, we say that deformations of codimension 2 Cohen–Macaulay sub-
schemes are locally unobstructed. However, in higher codimension, they may
be obstructed (Ex. 6.5), (Ex. 29.6).

Remark 8.4.2. The proof of (8.3) given by Ellingsrud [27], following Pesk-
ine and Szpiro [132], is slightly different. By formulating the Hilbert–Burch
theorem over a more general local ring, and using the more subtle theorem of
Auslander that for a module M of finite type and finite homological dimension
over a local ring A, depth M +hdM = depth A, they avoid some of the com-
plicated induction in the proof of (8.3). I preferred to limit the homological
algebra to the regular local ring, and then proceed by induction.

Remark 8.4.3. In case X = A
n
k , Schaps shows, using the fact that a pro-

jective module on a polynomial ring is stably free, that one can get a global
resolution, as in (8.2), over all of X. She then shows that all infinitesimal
deformations of Y in X are given by lifting the matrix ϕ, as in (8.3).

Corollary 8.5. In the situation of (6.2), deformations of a closed subscheme
Y0 of a scheme X0, assume that X0 is nonsingular and that Y0 is Cohen–
Macaulay of codimension 2. Then the obstructions to deforming Y to a closed
subscheme Y ′ ⊆ X ′ lie in H1(Y0,N0 ⊗k J).

Proof. Indeed, (8.2) and (8.3) tell us that deformations of Y over C exist on
small enough affine open subsets of X0, so (6.2) applies.

The Global Projective Analogue

This time we consider X = P
n
k , the projective space over k, and a closed

subscheme Y ⊆ X of codimension 2. To obtain results analogous to the affine
case, we must put a global hypothesis on Y .
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Definition. We say that a closed subscheme Y ⊆ P
n
k is arithmetically Cohen–

Macaulay (ACM) if its homogeneous coordinate ring R/IY is a (graded)
Cohen–Macaulay ring. Here R = k[x0, . . . , xn], and IY is the saturated homo-
geneous ideal of Y .

Proposition 8.6. Let Y be a closed subscheme of X = P
n
k . If dimY = 0,

then Y is ACM. If dimY ≥ 1, the following conditions are equivalent:

(i) Y is ACM.
(ii) R→ H0

∗ (OY ) is surjective, and Hi
∗(OY ) = 0 for 0 < i < dimY .

(iii) Hi
∗(IY ) = 0 for 0 < i ≤ dimY .

Proof. (Here we use the notation, for any coherent sheaf F on X, Hi
∗(F) =⊕

l∈Z
Hi(X,F(l)).) Let m = (x0, . . . , xn) be the irrelevant prime ideal of R.

If dimY = 0, then dimR/IY = 1, and since IY is the saturated ideal, it
does not have m as an associated prime. Hence R/IY has depth 1, and is a
Cohen–Macaulay ring, so Y is ACM.

For dimY ≥ 1, we use the exact sequence of local cohomology [24, A4.1]

0→ H0
m(R/IY )→ R/IY → H0

∗ (OY )→ H1
m(R/IY )→ 0

and the isomorphisms for i > 0

Hi
∗(OY ) ∼= Hi+1

m (R/IY ),

together with the local cohomology criterion for depth [24, A4.3], to obtain
the equivalence of (i) and (ii).

The equivalence of (ii) and (iii) follows from the cohomology of the exact
sequence

0→ IY → OX → OY → 0.

Proposition 8.7. Let Y be an ACM closed subscheme of X = P
n
k of codimen-

sion 2. Then there is an r × (r + 1) matrix ϕ of homogeneous elements of R
whose r × r minors fi minimally generate IY , giving rise to a resolution

0→
r⊕

i=1

R(−bi)
ϕ→

r+1⊕

i=1

R(−ai)
f→ R→ R/IY → 0.

Proof. Since R/IY is Cohen–Macaulay and a quotient of codimension 2 of
R, it has homological dimension 2 over R. The proof then follows exactly as
in the proof of the local case (8.1), using the graded analogues of depth and
homological dimension.

Although the structure theorem (8.7) follows exactly as in the local
case, when it comes to deformations, there is a new ingredient. We consider
deformations of the subscheme Y , and some extra work is required to show
that these give rise to deformations of the ring R/IY , so that we can apply
the techniques we used in the local case. This extra work is contained in the
following proposition, which applies only when dimY ≥ 1.
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Proposition 8.8. Let Y0 ⊆ X0 = P
n
k be a closed subscheme, and assume that

depth R0/I0 ≥ 2, where R0 = k[x0, . . . , xn] and I0 is the homogeneous ideal of
Y0. Let C be a local Artin ring with residue field k, let X = P

n
C , and let Y ⊆ X

be a closed subscheme, flat over C, with Y ×C k = Y0. Let R = C[x0, . . . , xn],
and let I ⊆ R be the ideal of Y . Then

(a)H1
∗ (IY ) = 0,

(b)R/I ∼= H0
∗ (OY ),

(c) R/I ⊗C k = R0/I0,
(d)R/I is flat over C.

Proof. (a) We use induction on the length of C. If C = k, the result follows
from depth R0/I0 ≥ 2 and the exact sequence in the proof of (8.6). For the
induction step, let

0→ J → C ′ → C → 0

with J ∼= k, and suppose Y ′ ⊆ X ′ = P
n
C′ flat over C ′ as above. Then IY ′ is

also flat, so we get an exact sequence

0→ IY ′ ⊗ J → IY ′ → IY → 0.

Now the exact sequence of H1
∗ and the induction hypothesis show that

H1
∗ (IY ′) = 0.

(b) This follows from the exact sequence

0→ IY → OX → OY → 0,

which gives

0→ H0
∗ (IY )→ R→ H0

∗ (OY )→ H1
∗ (IY )→ 0,

and (a) above, since H0
∗ (IY ) = I.

For (c) and (d), we use the isomorphism of (b). Tensoring with k we obtain
a diagram

R/I ⊗C k ∼= H0
∗ (OY )⊗C k

↓ α ↓ β
R/I0 ∼= H0

∗ (OY0)

Note that α is surjective, since both terms are quotients of R. Hence β is
surjective. It follows from cohomology and base change [57, III, 12.11] applied
to the sheaves OY (ν) for all ν, that β is an isomorphism, hence also α. This
proves (c).

To show that R/I is flat over C, we proceed by induction on length C. For
an exact sequence 0 → J → C ′ → C → 0 and Y ′ over C ′, the flatness of Y ′

gives an exact sequence

0→ J ⊗OY0 → OY ′ → OY → 0.
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Then from (b) we obtain

0→ J ⊗R0/I0 → R′/I ′ → R/I → 0,

and the flatness of R′/I ′ follows from induction and the local criterion of
flatness (2.2).

Now we can study deformations of codimension 2 ACM subschemes of P
n.

Theorem 8.9 (Ellingsrud [27]). Let Y0 be an ACM closed subscheme of
codimension 2 of X0 = P

n
k , and assume dimY0 ≥ 1. Using notation (6.1),

suppose we are given a closed subscheme Y of X = P
n
C , flat over C and with

Y ×C k = Y0. Then:

(a) There is an r × (r + 1) matrix ϕ of homogeneous elements of R =
C[x0, . . . , xn] whose r × r minors fi generate the ideal I of Y , and give a
resolution

0→
⊕
R(−bi)

ϕ→
⊕
R(−ai)

f→ R→ R/I → 0.

(b)For any lifting ϕ′ of ϕ to R′ = C ′[x0, . . . , xn], taking f ′ to be the r × r
minors gives an exact sequence

0→
⊕
R′(−bi)

ϕ′
→
⊕
R′(−ai)

f ′
→ R′ → R′/I ′ → 0

and defines a closed subscheme Y ′ of X ′ = P
n
C′ , flat over C ′, with Y ′ ×C′

C = Y .
(c) Any lifting Y ′ of Y to X ′, flat over C ′ with Y ′×C′ C = Y , arises by lifting

ϕ as in (b).

Proof. Since Y0 is ACM of dimension ≥ 1, it follows that R0/I0 is Cohen–
Macaulay of dimension ≥ 2. In particular, it has depth ≥ 2, so we can apply
(8.8) and thus reduce to studying deformations of R0/I0. Then using (8.7) we
can adapt the proof of (8.3) to the graded case to prove the result.

Example 8.9.1. The conclusions of (8.9) are false in the case of a scheme Y0

of dimension 0 in P
n. For example, let Y0 be a set of three collinear points

in P
2. Then there is a linear form in the ideal of Y0. But as you deform the

points in the direction of a set of three noncollinear points of P
2, the linear

form does not lift. So the deformations of Y0 cannot all be obtained by lifting
the elements of the corresponding matrix ϕ.

Corollary 8.10. The Hilbert scheme at a point corresponding to a codimen-
sion 2 ACM closed subscheme Y ⊆ P

n
k is smooth.

Proof. If n = 2 and Y is a zero-scheme, then (8.5) tells us that deformations
extend, since there is no H1 on Y . If dimY ≥ 1, then (8.9) tells us simi-
larly that deformations always extend. The infinitesimal lifting property (4.6)
implies that the Hilbert scheme is smooth, as in the proof of (6.3).
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Remark 8.10.1. We have shown that a Cohen–Macaulay codimension 2 sub-
scheme of P

n corresponds to a smooth point of the Hilbert scheme. However,
we have not said anything about existence of such schemes, what possible
Hilbert polynomials they can have, whether there exist nonsingular ones, the
dimension of the Hilbert scheme, and whether it is irreducible. From a presen-
tation such as (8.7) one can compute (in principle) the numerical invariants
of the scheme and the cohomology of its normal bundle. We will not go into
details here, since it would carry us too far from the main purpose of this book.
I would like to mention, however, that for ACM curves in P

3, one can say
exactly what the possible degree and genus pairs are (see note to (Ex. 8.11)).
The family of ACM curves with given d and g is not in general irreducible
(Ex. 8.12), but becomes so if one fixes one additional piece of combinatorial
data, called by various authors “numerical character” or “postulation char-
acter” or “h-vector.” Then one can give necessary and sufficient conditions
for the existence of smooth curves with that data, and one can compute the
dimension of the corresponding irreducible component of the Hilbert scheme.
We refer to [27], [49], [133], [99, V, §1] for statements and proofs.

Remark 8.10.2. The Hilbert scheme of codimension 3 ACM subschemes of
P

n is not necessarily smooth (Ex. 6.5), (Ex. 8.9).

Theorem 8.11. For every n > 0, the Hilbert scheme Hilbn(P2
k), parametriz-

ing zero-dimensional subschemes of length n of P
2, is irreducible.

Proof. By induction on n, the case n = 1 being trivial. There is one obvious
component, containing the sets of n distinct points, that is irreducible of
dimension 2n. Thus it will be sufficient to show that any zero-dimensional
subscheme Z of P

2 is a limit of a flat family of subschemes whose general
member consists of n distinct points. Furthermore, if Z has support at several
distinct points, we can deform the component of Z at each of these points
independently. Thus, by induction on the length of a “punctual” zero-scheme
concentrated at a single point, it will be sufficient to show that any punctual
zero-scheme can be “pulled apart” into at least two pieces. This process is
local, so we can work in the affine plane A

2, and thus we reduce to proving
the following lemma.

Lemma 8.12. Let a ⊆ A = k[x, y] be an ideal of finite colength n such
that Z = Spec(A/a) has support at the origin (0, 0). Then there is an ideal
at ⊆ A[t], defining a family Zt of subschemes of A

2
T , flat over T , where

T = Spec k[t], whose fiber Z0 for t = 0 is Z, and whose fiber Zt for t �= 0 is
supported at two distinct points, (0, 0) and (0, t).

Proof of Lemma. Choose f ∈ a of minimal order s, that is, f ∈ ms −ms+1

with s minimal, where m = (x, y). Then, by a linear change of coordinates,
we may assume that the leading form of f is f0 = xs + · · · . Furthermore,
since a is of finite colength supported at (0, 0), a contains mN for some N , so
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after subtracting various higher-degree multiples of f from itself, we may also
assume that f , as a polynomial in x, is of degree s, with leading term xs.

Now let b = {g ∈ A | yg ∈ a}. Then it is clear that f ∈ b and a = (f)+yb.
Indeed, any element of a can be written as a multiple of f plus something
with no pure powers of x, hence divisible by y. Note that b is also of finite
colength, supported at (0, 0), since it contains mN−1.

Let at = (f) + (y− t)b. Then at = (f, y− t)∩ b. Indeed, the inclusion ⊆ is
obvious. For the opposite inclusion, let uf + v(y− t) = b be an element of the
intersection with u, v ∈ A and b ∈ b. Then v(y− t) ∈ b. But y− t is invertible
in the local ring at the origin, so v ∈ b also.

We take Zt = Spec k[x, y, t]/at. Then Z0 = a, and for t �= 0, Zt consists of
SpecA/b at the origin and Spec k[x, y, t]/(f, y − t) at the point (0, t).

To show that Zt is flat over T , we must check that the length of Zt is
constant in the family [57, III, 9.9]. Let n = colength a. Then from the exact
sequence

0→ A/b
y→ A/a→ A/a + (y)→ 0

and the fact that a + (y) = (xs, y) we see that length A/b = n − s. On the
other hand, for a particular t, (f, y − t) has colength equal to the number of
solutions of f(x, t) = 0, which is s, since f as a polynomial in x has degree s.
Thus Zt has length (n− s) + s = n and the family is flat.

Corollary 8.13. Hilbn
P

2 is smooth and irreducible.

Proof. Combine (8.10) and (8.11).

Remark 8.13.1. The irreducibility of Hilbn
P

2 also follows from smoothness
(8.10) together with the more general result that for any polynomial P , the
Hilbert scheme of closed subschemes of P

n with Hilbert polynomial P is con-
nected [53].

Remark 8.13.2. For N ≥ 3, the Hilbert scheme of zero-dimensional sub-
schemes of P

N is not in general irreducible (Ex. 5.8), (Ex. 8.10).

References for this section. The statement that under certain conditions
an ideal I is generated by the r×r minors of an r×(r+1) matrix, now known as
the Hilbert–Burch theorem, appears in many forms in the literature. Hilbert,
in his fundamental paper [67], where he first proves the finite generation of an
ideal in a polynomial ring (“Hilbert basis theorem”), the existence of a finite
free resolution for a homogeneous ideal in a polynomial ring (“Hilbert syzygy
theorem”), defines the characteristic function (“Hilbert function”) of an ideal,
and proves that it is a polynomial (“Hilbert polynomial”) for large integers,
as an application of his methods, gives the structure of a homogeneous ideal I
in the polynomial ring k[x1, x2] by showing that if it is generated by f1, . . . , fn

with no common factor, then the fi are, up to a scalar, the (n− 1)× (n− 1)
minors of an (n− 1)× n matrix.
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Burch [14] proved the same structure theorem for an ideal of homological
dimension one in a local ring, referring to an earlier paper of his for the case
of a local domain.

Buchsbaum [11, 3.4] proved the result for an ideal of homological dimension
one in a local UFD, as a consequence of a more general result of his.

As far as I can tell from the published record, these three discoveries are
all independent of each other, except that Burch and Buchsbaum were both
working within a larger context of rapidly developing results in homological
algebra involving many other mathematicians.

Peskine and Szpiro [132, 3.3] extended Buchbaum’s result to the case of
an arbitrary local ring. Ellingsrud [27] used the result of Peskine–Szpiro in his
study of Cohen–Macaulay schemes of codimension 2 in P

n. The deformation
theory in this case is new with Ellingsrud.

Meanwhile, Burch’s result is given as an exercise in Kaplansky [76, p. 148].
Schaps [144] gives a proof of this exercise for the case of a Cohen–Macaulay
subscheme of codimension 2 in A

n, and studies the deformation theory, new
with her in this case. Artin [8] gives an account of the result, with deformation
theory, saying it is due to Hilbert and Schaps.

By the time of Eisenbud’s book [24, p. 502] the result for an ideal of
homological dimension one in a local ring appears as the “Hilbert–Burch”
theorem. Eisenbud’s proof is a consequence of his more general theory of
“what makes a complex exact.”

For a refinement of (8.8) of this section, see Piene and Schlessinger [134].
The previously unpublished proof of (8.11) given here was discovered by

Hartshorne during the academic year 1961–62, when Grothendieck gave lec-
tures on the Hilbert scheme at Harvard. This idea of pulling apart thick
schemes later became one of the key ingredients in his thesis [53], in which he
proved that for any polynomial P , the Hilbert scheme of closed subschemes
of P

n with Hilbert polynomial P is connected.
Another more conceptual proof of (8.11), generalized to zero-schemes in

any smooth surface, appears in Fogarty [33].

Exercises.

8.1. ACM curves on quadric and cubic surfaces.

(a) A curve Y of bidegree (a, b) on a nonsingular quadric surface in P
3 is ACM if

and only if |a− b| ≤ 1.
(b) A curve Y on a nonsingular cubic surface in P

3 is ACM if and only if it is linearly
equivalent to C + mH, where H is a hyperplane section, m ≥ 0 is an integer,
and C is either a line, a conic, a twisted cubic, or a hyperplane section.

8.2. Give an example of a nonsingular ACM curve Y in P
3, therefore corresponding

to a smooth point of the Hilbert scheme, but for which H1(NY ) �= 0.

8.3. Show that the union of a plane cubic curve and a line described in (Ex. 1.4)
is an ACM curve in P

3. Hence by (8.10) it corresponds to a nonsingular point of the
Hilbert scheme, giving another proof of (Ex. 1.5).
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8.4. Linkage. For ease in computing examples, we introduce the notion of link-
age. For simplicity, we treat only curves in P

3, though it can be defined in all
dimensions and codimensions. When speaking of linkage, a curve will mean a locally
Cohen–Macaulay one-dimensional closed subscheme of P

3. In other words, it may
be singular, reducible, or nonreduced, but it must not have embedded points or iso-
lated points. Two curves C and C′ are linked by a complete intersection of surfaces
X ∩ Y if C′ = X ∩ Y − C as divisors on X. This is easiest to understand if X is
nonsingular, in which case curves on X are Cartier divisors, but it also makes sense
on an arbitrary surface X, using the theory of generalized divisors [63, §4].

(a) If C is a curve contained in a complete intersection X ∩ Y , then there exists a
curve C′ such that C and C′ are linked, and C′ is also linked to C.

(b) If C has degree d and genus g, and the surfaces X,Y have degrees s, t, then the
degree d′ and genus g′ of C′ are given by

{
d′ = st− d,

g′ = 1
2
(d′ − d)(s+ t− 4) + g.

(c) We define the Rao module of a curve C to be the graded R = k[x, y, z, w]-module
M =

⊕
n∈Z

H1(IC(n)). Using exact sequences and duality on X, show that the
Rao module M ′ of C′ is isomorphic to M∗(s + t − 4). Here ∗ denotes the dual
vector space, so this means that H1(IC′(n)) is dual to H1(IC(s+ t− 4−n)) for
each n.

(d) As a consequence of (c), any curve linked to an ACM curve is also ACM.
(e) The speciality function H1

∗(OC′(n)) is related to the postulation function
H0

∗(IC(n)) by the formula

h1(OC′(s+ t− 4 − n)) = h1(IC(n)) −
(
n− s+ 3

3

)

−
(
n− t+ 3

3

)

+

(
n− s− t+ 3

3

)

,

where the binomial coefficient ( ab ) is taken to be 0 whenever a < b.

8.5. Twisted cubic curves. We have seen that the Hilbert scheme of all sub-
schemes with Hilbert polynomial 3z+ 1, i.e., degree 3 and arithmetic genus 0 in P

3,
is reducible (Ex. 1.6). However, here we show that the family of ACM curves with
degree 3 and genus 0 is an open subset of one irreducible component of the Hilbert
scheme, containing the (nonsingular) twisted cubic curves.

(a) Let C be an ACM curve of degree 3 and genus 0. Then h0(IC(2)) = 3. Deduce
from this that C is contained in an irreducible quadric surface X, and hence in
a complete intersection X ∩ Y of two quadric surfaces.

(b) Show that the linked curve is a line, and then by doing linkages in reverse
conclude that the family of all ACM (3, 0) curves is irreducible of dimension 12.

8.6. Biliaison. If a curve C′ is linearly equivalent to C + mH on a surface X
in P

3, where H is the hyperplane class, we say that C′ is obtained from C by an
elementary biliaison of height m.
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(a) If C has degree d and genus g, and X has degree s, then the degree and genus
of C′ are given by

{
d′ = d+ms,

g′ = g +md+ d
2
ms(m+ s− 4).

(b) The Rao module M ′ of C′ is isomorphic to M(m).

8.7. ACM (6, 3)(6, 3)(6, 3) curves in P
3

P
3

P
3. We consider ACM curves of degree 6 and genus 3

in P
3.

(a) Consider a curve of type (4; 16) in the notation of [57, V, §4] on a nonsingular
cubic surface X. This is the transform of a plane quartic curve passing through
the six points that are blown up to obtain the cubic surface. The general such
curve is nonsingular, of degree 6 and genus 3, and is ACM in P

3. This shows
existence.

(b) Now let C be any ACM (6, 3) curve in P
3, not necessarily nonsingular, irre-

ducible, or reduced. Show that it cannot lie in a plane or any surface of degree 2:
in the plane there are no curves of that degree and genus, nor are there any on a
quadric cone [57, V, Ex. 2.9]. There are (6, 3) curves on a nonsingular quadric,
but they are not ACM (Ex. 8.1).

(c) Show that h0(IC(3)) = 4. Moreover, hi(IC(3 − i)) = 0 for i > 0, so that C is
3-regular in the sense of Castelnuovo–Mumford [115] and it follows that IC(3)
is generated by global sections.

(d) Use the Bertini theorem applied to P
3 with the curve C blown up to show that

C is contained in a nonsingular cubic surface X. It follows (Ex. 8.1) that C is
linearly equivalent to Γ + H, where Γ is a twisted cubic curve and H is the
hyperplane section. Since the twisted cubic curves in P

3 form an irreducible
family (Ex. 8.5), conclude that the ACM (6, 3) curves form an open nonsingular
subset of an irreducible component of the Hilbert scheme.

8.8. A remarkable family. We have seen earlier (Ex. 6.4) that the family of
curves of bidegree (2, 4) on quadric surfaces is irreducible of dimension 23 and must
be contained in the closure of an irreducible component of dimension 24 of the
Hilbert scheme. These are (6, 3) curves that are not ACM.

(a) If C is a bidegree (2, 4) curve on the nonsingular quadric surface Q, show that
its Rao module is k in degree 2, and 0 elsewhere (use (Ex. 8.6), noting that C is
obtained by biliaison from two skew lines).

(b) Show conversely that if C is a (6, 3) curve in P
3 with h1(IC(2)) = 1, then C is

contained in a quadric surface, and IC(4) is generated by global sections. Then
one can link by an intersection of surfaces of degrees 2 and 4 to a curve of degree 2
and genus −1. This must be two skew lines or a double line with g = −1, and
these form an irreducible family. Hence the (6, 3) curves with h1(IC(2)) = 1
form an irreducible family containing the curves described in (a).

(c) If Ct is a flat family of (6, 3) curves with C0 on a quadric surface and the general
Ct not on a quadric surface, show by semi-continuity that the general Ct is ACM.

(d) Conclude that the bidegree (2, 4) curves on Q are in the closure of the irreducible
component of ACM (6, 3) curves (Ex. 8.7). Hence for any bidegree (2, 4) curve
C0 on Q there exists a flat family Ct whose general member is a nonsingular
ACM (6, 3) curve and whose special fiber is C0.
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Note. This seems a rather mysterious way of proving the existence of a family,
because we cannot see how it happens, but only deduce its existence from the
deformation theory of the Hilbert scheme.

(e) Show that the nonsingular bidegree (2, 4) curves on Q are hyperelliptic, and
every hyperelliptic genus 3 curve appears as one of these, while the ACM (6, 3)
curves are not hyperelliptic. Thus the family of (d) shows that every hyperelliptic
genus 3 curve is contained in a flat family of curves whose general member is
not hyperelliptic.

Note. It is clear that there are irreducible families containing all hyperelliptic
curves of a given genus g (since they can be represented in the plane by y2 = f(x),
where f(x) has degree 2g+1 or 2g+2), and it is clear that there is an irreducible
family containing all nonhyperelliptic genus 3 curves (since they have a canonical
embedding as plane quartic curves), but it is by no means obvious that there is a
single irreducible family containing both types of curves, as we have just shown
with the Hilbert scheme of all smooth (6, 3) curves in P

3. For another proof of
this fact, see (Ex. 27.2). Of course the existence of such families is a consequence
of the irreducibility of the variety of moduli of curves Mg. But that is a big
theorem [21], beyond the scope of this book, so the point is to find a more direct
proof.

(f) Generalize the above argument to show that any hyperelliptic curve of genus 4
is a limit of a family of nonhyperelliptic curves of genus 4.

8.9. Let Y be the curve in X = P
4 consisting of the four coordinate axes of A

4

through the point (0, 0, 0, 0, 1). Thus, if P
4 has coordinates x, y, z, w, t, then Y is the

union of the four lines defined by the ideals (x, y, z), (x, y, w), (x, z, w), (y, z, w).

(a) Show that Y is an ACM curve of degree 4 and arithmetic genus 0 and that its
ideal is I = (xy, xz, xw, yz, yw, zw).

(b) Show that OY has a resolution

OX(−3)12 → OX(−2)6 → OX → OY → 0,

and use this to deduce an exact sequence

0 → H0(NY ) → H0(OY (2))6 → H0(OY (3))12.

(c) By explicit computation with the basis of I and their relations, using the
sequence of (b), show that h0(NY ) = 24.

(d) Construct flat families of curves in P
4 to show that Y is in the closure of the

irreducible component of the Hilbert scheme whose general point corresponds to
a nonsingular rational normal quartic curve in P

4, and show that this component
has dimension 21. Conclude that Y corresponds to a singular point of Hilb.

(e) Using the exact sequence

0 → TY → TX |Y → NY → T 1
Y → 0

show that H1(NY )) = 0.
(f) Conclude that Y has obstructed local deformations at the singular point.
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(g) Show that H0(NY ) → H0(T 1
Y ) → 0 is surjective, so every abstract deformation

of the scheme Y can be realized in P
4.

8.10. (Iarrobino [71]). The Hilbert scheme of zero-dimensional subschemes of P
3

is not irreducible. In the affine 3-space A
3 with coordinate ring R = k[x, y, z], let

m = (x, y, z), let V be a 24-dimensional subscheme of m7/m8, and let I = V + m8.
We consider the subscheme Z concentrated at the origin defined by B = R/I.

(a) Show that the length of B is 96.
(b) The dimension of the component of Hilb96(P3) containing sets of 96 distinct

points is 288.
(c) The dimension of the family of subschemes of type Z, as V varies, and the

support point varies, is 291.
(d) Therefore, the schemes of type Z are not in the closure of the component con-

taining sets of distinct points, so Hilb96(P3) is not irreducible.

8.11. The hhh-vector [105, §1.4]. One can define the h-vector for ACM schemes
of any dimension in any projective space, but for simplicity we will treat the case
of curves in P

3 and let the reader generalize. Let C be an ACM curve in P
3, with

homogeneous coordinate ring R/IC . This is a Cohen–Macaulay ring of dimension 2.
Dividing by two general linear forms, we obtain a zero-dimensional graded ring
R0. The h-vector of C is just the Hilbert function of this ring: h(n) = dimk(R0)n.
Equivalently, one can define h(n) as the second difference function of the Hilbert
function of C, h0(OC(n)).

(a) Prove the following properties of h:
(1) h(0) = 1.
(2) There is an integer s ≥ 1, equal to the least degree of a surface containing

C, such that ⎧
⎪⎪⎨

⎪⎪⎩

h(n) = n+ 1 for 0 ≤ n ≤ s− 1,

h(n) ≥ h(n+ 1) for n ≥ s− 1,

h(n) = 0 for n� 0.

(3) h0(IC(s)) = s+ 1 − h(s).
(b) One can recover the degree and (arithmetic) genus of C from the h-vector as

follows:

d =
∑

n≥0

h(n),

g =
∑

n≥1

(n− 1)h(n).

(c) The h-vector is constant in a flat family of ACM curves. Hint: Use semicontinuity
of h0(IC(n)) and h0(OC(n)).

(d) For example, show that:
(1) A plane curve of degree d has h = 1, 1, . . . , 1 (d times).
(2) The twisted cubic curve has h = 1, 2.
(3) The (6, 3) curves of (Ex. 8.7) have h = 1, 2, 3.
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(4) A complete intersection of surfaces of degrees s, t, with s ≤ t, has symmetric
h-vector 1, 2, 3, . . . , s, s, . . . , s− 1, . . . , 3, 2, 1, where there are t− s+ 1 copies
of s in the middle.

Note. Some facts, which we will not use [105, pp. 95–97], are that:

(1) ACM curves exist with any h-vector satisfying the properties listed in (a) above.
(2) There exists a nonsingular curve with given h-vector if and only if it is of

decreasing type, which means that if h(n) > h(n + 1) for some n, then the
same is true for all n′ ≥ n until h(n′) = 0.

(3) The set of ACM curves with given h-vector forms an open subset of an irreducible
component of the Hilbert scheme.

8.12. The Hilbert scheme of ACM curves with given degree and genus in P
3 is

not always irreducible. The first case in which this happens for nonsingular ACM
curves is for d = 18 and g = 39.

(a) If C is an ACM (18, 39) curve, then C is not contained in any surface of degree
≤ 3. Hint: Use properties of the h-vector.

(b) Case 1. C is contained in a quartic surface X. Then C can be linked by a
complete intersection of surfaces of degrees 4 and 6 to an ACM (6, 3) curve
(Ex. 8.4). Since these form an irreducible family (Ex. 8.7), show that these
(18, 39) ACM curves also form an irreducible family C1, and that the dimension
of this family is 4d = 72. These curves have h-vector 1, 2, 3, 4, 4, 4.

(c) Case 2. C is not contained in a quartic surface. Then h0(IC(5)) = 4, and C
can be linked by two surfaces of degree 5 to an ACM (7, 6) curve (Ex. 8.4). Such
curves lie on a quadric surface, are of bidegree (3, 4), and form an irreducible
family of dimension 28. Show therefore that these (18, 39) curves also form an
irreducible family C2 of dimension 72. They have h-vector 1, 2, 3, 4, 5, 2, 1.

(d) Since the h-vectors are different, we thus have two nonintersecting open subsets
of the Hilbert scheme consisting of ACM curves of degree 18 and genus 39. This
situation is used by Sernesi to construct singular points lying on two distinct
irreducible components of the Hilbert scheme (Ex. 13.2).

9. Complete Intersections and Gorenstein in
Codimension Three

As in the previous section, Cohen–Macaulay in codimension two, there are
some other situations in which the particular structure of the resolution of an
ideal allows us to show that all deformations have the same structure, and
that deformations can always be extended by lifting the corresponding reso-
lutions. These are the cases of complete intersections and Gorenstein schemes
in codimension 3.

Complete Intersections

Proposition 9.1. Let A be a local Cohen–Macaulay ring, let a1, . . . , ar be
elements of A, let I = (a1, . . . , ar), and let B = A/I. The following conditions
are equivalent:
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(i) a1, . . . , ar is a regular sequence in A.
(ii) dimB = dimA− r.
(iii) The Koszul complex K•(a1, . . . , ar) is exact and so gives a resolution of

B over A.

Proof. [104, 16.5].

Definition. In case the equivalent conditions of the proposition are satisfied,
we say that I is a complete intersection ideal in A, or that B is a complete
intersection quotient of A.

Thus already in our definition of complete intersection, we have the reso-
lution

0→
r∧
Ar →

r−1∧
Ar → · · · → Ar → A→ B → 0.

The Koszul complex of a1, . . . , ar is all of this except the B at the right.
We will see that deformations of a complete intersection correspond to

lifting the generators of the ideal, and that the Koszul resolution follows along.

Theorem 9.2. Using notation (6.1), suppose we are given A′ flat over C ′

such that A0 = A′ ⊗C′ k is a local Cohen–Macaulay ring. Suppose also that
B = A/I, a quotient of A = A′ ×C′ C, flat over C, such that B0 = B ⊗C k is
a complete intersection quotient of A0 of codimension r. Then:

(a) I can be generated by r elements a1, . . . , ar, and the Koszul complex
K•(A; a1, . . . , ar) gives a resolution of B.

(b) If a′1, . . . , a
′
r are any liftings of the ai to A′, then the Koszul complex

K•(A′; a′1, . . . , a
′
r) is exact and defines a quotient B′ = A′/I ′, flat over

C ′, with B′ ×C′ C = B.
(c) Any lifting of B to a quotient B′ of A′, flat over C ′, such that B′×C′C = B

arises by lifting the ai, as in (b).

Proof. The proof follows the plan of proof of (8.3) except that it is simpler.
For (b), suppose we are given the situation of (a) and let a′1, . . . , a

′
r be

liftings of the ai. Then we get an exact sequence of Koszul complexes

0→ K•(A′; a′1, . . . , a
′
r)⊗ J → K•(A′; a′1, . . . , a

′
r)→ K•(A; a1, . . . , ar)→ 0,

and the one on the left is equal to K•(A; a1, . . . , ar)⊗C J . Since B is flat over
C, this complex is exact with quotient B⊗J . The exact sequence of homology
of the sequence of complexes shows that the middle one is exact, and that its
cokernel B′ belongs to an exact sequence

0→ B ⊗C J → B′ → B → 0.

Now the local criterion of flatness (2.2) shows that B′ is flat over C ′.
For (c), we just use Nakayama’s lemma to show that I ′ can be generated

by r elements a′1, . . . , a
′
r. Then (a) follows from (b) and (c) by induction on

length C.
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We leave to the reader to formulate an affine version of this theorem similar
to (8.3), in case A is a finitely generated ring over a field k whose localizations
are all Cohen–Macaulay rings. In this case a complete intersection ideal would
be I = (a1, . . . , ar), such that for every prime ideal p ∈ SuppA/I, the ai

generate a complete intersection ideal in the local ring Ap. We can form a
Koszul complex globally, and show that it is a resolution of B = A/I by
looking at its localizations. Deformations will behave exactly as in (9.2).

Corollary 9.3. If Y is a locally complete intersection subscheme of P
n, then

obstructions to deforming Y as a subscheme of P
n lie in H1(NY ). In parti-

cular, this applies to nonsingular subschemes.

Proof. Combine (9.2) with (6.2) and (4.3). This proves (1.1c).

For the global projective case, we say that a closed subscheme Y ⊆ X =
P

n
k is a (global) complete intersection if its homogeneous ideal IY ⊆ R =
k[x0, . . . , xn] can be generated by r = codim(Y,X) homogeneous elements.
These elements will then form a regular sequence in R, and the associated
Koszul complex will give a resolution of R/IY over R.

To deal with deformations, we must again assume dimY ≥ 1 so as to be
able to apply (8.8).

Theorem 9.4. Let C ′, J, C be as before. Let Y ⊆ X = P
n
C be a closed sub-

scheme, flat over C, such that Y ×C k = Y0 ⊆ X0 = P
n
k is a complete

intersection of codimension r, and assume dimY0 ≥ 1. Then as in (8.3) (we
abbreviate the statement),

(a)R/IY has a resolution by the Koszul complex of graded R-modules.
(b)Any lifting of the generators of IY gives a deformation Y ′ ⊆ X ′.
(c) Any deformation Y ′ ⊆ X ′ of Y arises as in (b).

We could abbreviate this further by saying that any deformation of a
complete intersection of dim ≥ 1 is again a complete intersection, and that
these deformations are unobstructed.

Corollary 9.5. If Y0 ⊆ X0 = P
n
k is a complete intersection, the Hilbert

scheme at the corresponding point is smooth.

Proof. If dimY0 ≥ 1, the result follows from (9.4), as in the proof of (8.10).
If dimY0 = 0, then Y0 is contained in an affine n-space A

n, and we can use
(9.3) together with the fact that a zero-scheme has no H1.

Example 9.5.1. The conclusion of (9.3) is false for Y0 of dimension 0. The
same example mentioned in (8.9.1) of three collinear points in P

2 is a complete
intersection, but its general deformation to three noncollinear points is not a
complete intersection.
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Gorenstein in Codimension 3

A local ring A of dimension n with residue field k is a Gorenstein ring if
Extn(k,A) = k and Exti(k,A) = 0 for all i �= n. The same definition applies
to a graded ring R with R0 = k. A scheme X is (locally) Gorenstein if all of its
local rings are Gorenstein rings. A closed subscheme Y of P

n
k is arithmetically

Gorenstein if its homogeneous coordinate ring k[x0, . . . , xn]/IY is a Gorenstein
ring. We refer to [104] for general results about Gorenstein rings.

The study of deformations of Gorenstein schemes in codimension 3 is
similar to that of Cohen–Macaulay in codimension 2, but more difficult. First
we have a structure theorem due to Buchsbaum and Eisenbud [12, 2.1]. If ψ is
a skew-symmetric matrix of even rank, its determinant is the square of a poly-
nomial in its entries, called the Pfaffian of ψ. If ϕ is a skew-symmetric matrix
of odd rank n, the Pfaffian of the rank n− 1 matrix obtained by deleting the
ith row and the ith column is called the ith Pfaffian of ϕ.

Theorem 9.6. Let A be a regular local ring, and let B = A/I be a quotient
that is Gorenstein and of codimension 3. Then there is a skew-symmetric
matrix ϕ of odd order n of elements of A whose Pfaffians fi generate the ideal
I and that gives rise to a resolution

0→ A
f∨
→ An ϕ→ An f→ A→ A/I → 0.

Using techniques analogous to those in the Cohen–Macaulay codimension 2
case, one can show that deformations of B always extend, and have resolutions
of the same type. We leave the details to the reader.

Theorem 9.7. Let A0 be a smooth algebra of finite type over k, let ϕ be
a skew-symmetric matrix of odd order n with Pfaffians fi, and suppose that
B0 = A0/I0 has a resolution as in (9.6). Then deformations of B0 have similar
resolutions: the analogues of statements (a), (b), (c) of (8.3) hold.

The same kind of resolution holds also in the graded case, and using (8.8)
to pass from deformations of projective schemes to the associated graded rings,
one can prove in the same way the following theorem.

Theorem 9.8. Let Y0 ⊆ X0 = P
n
k be an arithmetically Gorenstein closed

subscheme of codimension 3. Then there is a skew-symmetric matrix ϕ of
homogeneous polynomials such that the homogeneous coordinate ring R/IY0 of
Y0 has a graded resolution of the form (9.6), analogous to (8.7). Furthermore,
assuming that dimY0 ≥ 1, all deformations of Y0 have similar resolutions: the
analogous statements to (a), (b), (c) of (8.9) hold.

Corollary 9.9 (Miró–Roig [106]). Let Y ⊆ X = P
n
k be an arithmetically

Gorenstein scheme of codimension 3, and assume dimY ≥ 1. Then the Hilbert
scheme is smooth at the point corresponding to Y , and all nearby points also
represent arithmetically Gorenstein schemes.
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References for this section. The relation between complete intersections,
regular sequences, and the Koszul complex is by now classical—I first learned
about it from Serre’s Algèbre Locale Multiplicités [156].

As for the Gorenstein in codimension 3 case, the first paper was by
Watanabe [173]. Then came the structure theorem of Buchsbaum and Eisenbud
[12], on which all later results are based. The proof of the structure theorem
(9.6) is rather subtle. But once one has that result, the implications we have
listed for deformation theory follow quite easily using the methods of the
previous section.

As general references for linkage (in the exercises), see the book of Migliore
[105] for the global case, and the papers of Huneke and Ulrich, starting with
[69], for the local case. Deformations of linkages are studied in the global
case by Kleppe [83] and in the local case by Buchweitz [13]. One knows from
the theorems of Gaeta and Watanabe (see for example [105]) that Cohen–
Macaulay schemes in codimension 2 and Gorenstein schemes in codimension 3
are licci. Hence the interest in finding nonlicci schemes (Ex. 9.4), (Ex. 29.7).

Exercises.

9.1. Let C be the curve in A
3 defined parametrically by (x, y, z) = (t3, t4, t5). Show

that C is not a local complete intersection at the origin [57, I, Ex. 1.11]. Never-
theless, it is Cohen–Macaulay in codimension 2, so there are no local obstructions
to deformations.

9.2. Consider canonical curves C of genus 5 and degree 8 in P
4 [57, IV, Ex. 5.5].

(a) The general such curve is a complete intersection of three quadric hypersurfaces,
so the corresponding point on the Hilbert scheme is nonsingular.

(b) But if the curve is trigonal, the three quadrics containing it intersect in a ruled
cubic surface, so the curve is no longer a complete intersection. However, it is still
ACM, and is arithmetically Gorenstein, since ωC = OC(1), so it still corresponds
to a smooth point on the Hilbert scheme.

9.3. Linkage of deformations. Let Z0 be a Gorenstein scheme over k (meaning
equidimensional and all local rings are Gorenstein) and let X0 be a Cohen–Macaulay
closed subscheme of the same dimension. Let X ⊆ Z be deformations of X0 and
Z0 over an Artin ring C. Define a sheaf of ideals IY = HomOZ (OX ,OZ), and let
Y ⊆ Z be the subscheme defined by IY . In this case we say that Y is linked to X
by Z.

(a) Show that the sheaf IX is a flat deformation of the sheaf IX0 , and that IX0 is
also a Cohen–Macaulay sheaf on Z0.

(b) Dualize the sequence
0 → IX → OZ → OX → 0

and use (Ex. 7.5f) to show that OY = I∨
X . Then from (Ex. 7.5) show that Y is

flat over C and is a deformation of Y0, defined by IY0 = HomOZ0
(OX0 ,OZ0),

which is also a Cohen–Macaulay scheme.
(c) Using (Ex. 7.5e) show that IX = Hom(OY ,OZ), so X is also linked to Y by Z.

In other words, the relation of linkage is symmetric.
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9.4. Extension of linked deformations. Let P0 be the spectrum of a regular
local ring over k, let Z0 be a complete intersection subscheme of P0, and let X0 ⊆
Z0 be a Cohen–Macaulay scheme of the same dimension. Suppose we are given
deformations X ⊆ Z ⊆ P over an Artin ring C, and using notation (6.1), suppose
we are given extensions X ′ ⊆ P ′ of X and P over C′.

(a) Show that there exists an extension Z′ of Z (as in (9.2)) that contains X ′, and
hence the scheme Y ′ linked to X ′ by Z′ is an extension of Y linked to X by Z.

(b) Let Y0 be linked to X0 by Z0, and conclude that Y0 has obstructed deformations
if and only if X0 has obstructed deformations.

(c) We say that a subscheme X0 ⊆ P0 is licci (in the liaison class of a complete
intersection) if there is a finite sequence of linkagesX0 toX1, . . . , Xn by complete
intersection schemes Z0, . . . , Zn−1 such that Xn is itself a complete intersection.
Conclude that if X0 is licci it has unobstructed deformations. (This result is used
in (Ex. 29.7) to give an example of a codimension 3 Cohen–Macaulay scheme
that is not licci.)

(d) Prove a global analogue of this result, which says that if X0 and Y0 are ACM
subschemes of P

n
k linked by a complete intersection scheme Z0, and if x0, y0 are

the corresponding points of their respective Hilbert schemes, then x0 is a smooth
point if and only if y0 is a smooth point.

10. Obstructions to Deformations of Schemes

In §6 and §7 we have discussed higher-order deformations of closed sub-
schemes, line bundles, and vector bundles—Situations A, B, and C. Now we
continue with Situation D, higher-order deformations of schemes, whose first-
order deformation we discussed in §5.

Recall from §5 that if X0 is a scheme over k, then a deformation of X0 over
an Artin ring C is a scheme X, flat over C, together with a closed immersion
X0 ↪→ X inducing an isomorphism X0

∼→ X ×C k.

Definition. If C ′ is another Artin ring, together with a surjective map C ′ →
C, and if X is a deformation of X0 over k, an extension of X over C ′ is a
deformation X ′ of X0 over C ′, together with a closed immersion X ↪→ X ′

inducing an isomorphism X
∼→ X ′×C′C. Two such extensions X ′ and X ′′ are

equivalent if there is an isomorphism of deformations X ′ ∼→ X ′′ compatible
with the closed immersions of X into each.

We consider the affine case first. Using the notation of (6.1), suppose we
are given a k-algebra B0, and a deformation B of B0 over C. We ask for
extensions of B over C ′.

Theorem 10.1. In the above situation:

(a) There is an element δ ∈ T 2(B0/k,B0⊗J), called the obstruction, with the
property that δ = 0 if and only if an extension B′ of B exists.

(b) If extensions exist, then the set of equivalence classes of such extensions
is a torsor under the action of T 1(B0/k,B0 ⊗ J).
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Proof. (a) To define the obstruction, choose a polynomial ring R =
C[x1, . . . , xn] and a surjective mapping R→ B with kernel I. Let f1, . . . , fr ∈
I be a set of generators, let F be the free module Rr, and let Q be the kernel
of the natural map F → I:

0→ Q→ F → I → 0.

The idea is to lift the fi to elements f ′i ∈ R′ = C ′[x1, . . . , xn], define B′ =
A′/I ′, where I ′ = (f ′i , . . . , f

′
n), and investigate whether we can make B′ flat

over C ′. Let F ′ = R′r, and let Q′ = ker(F ′ → I ′). Tensoring with 0 → J →
C ′ → C → 0 we get a diagram

0 0
↓ ↓
Q′ → Q
↓ ↓

0 → F ⊗ J → F ′ → F → 0
↓ ↓ f ′ ↓ f

0 → R0 ⊗ J → R′ → R → 0
↓ ↓ ↓

B0 ⊗ J → B′ → B → 0
↓ ↓ ↓
0 0 0

From the snake lemma there is a map δ0 : Q→ B0⊗J , depending on the lifting
f ′ of f . We know from the local criterion of flatness (2.2) that B′ is flat over C ′

if and only if the map B0⊗J → B′ is injective, and this is equivalent to δ0 = 0.
Any element in F0 (in the notation of (3.1)) is of the form fjei−fiej in F , and
this lifts to f ′je

′
i − f ′ie′j in Q′, so the map δ0 factors through Q/F0. Thus we

get a homomorphism δ1 ∈ Hom(Q/F0, B0⊗ J). And this, using the definition
of T 2(B/C,B0 ⊗ J) as coker(Hom(F/IF,B0 ⊗ J) → Hom(Q/F0, B0 ⊗ J)),
gives us the desired element δ ∈ T 2(B0/k,B0 ⊗ J), which is the same as
T 2(B/C,B0 ⊗ J), by Base Change II (Ex. 3.8).

We must show that δ is independent of all the choices made. If we make
a different choice of lifting f ′′i of the fi, then the f ′i − f ′′i define a map from
F ′ to R0 ⊗ J and hence from F/IF to B0 ⊗ J , and these go to zero in T 2.
If we choose a different polynomial ring R∗ → B, then as in the proof of (3.3)
we reduce to the case R∗ = R[y1, . . . , ys], and the yi go to zero in B. The
contribution to δ of the yi is then zero. Thus δ depends only on the initial
situation B/C and C ′ → C.

If the extension B′/C ′ does exist, we can start by picking a polynomial
ring R′ over C ′ that maps surjectively to B′, and use R = R′⊗C′C mapping to
B in the above construction. Then the generators of I ′ descend to generators
of I, and the diagram above shows that δ0 = 0, so a fortiori δ = 0.

Conversely, suppose δ = 0. Then we must show that an extension B′ exists.
In fact, we will show something apparently stronger, namely that having made
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a choice R→ B → 0 as above, we can lift B to a quotient of the corresponding
R′. In fact, we will show that it is possible to lift the fi to f ′i in such a way
that the map δ0 : Q→ B0 ⊗ J is zero.

Our hypothesis is only that δ ∈ T 2 is zero. By definition of T 2, this means
that the map δ1 ∈ Hom(Q/F0, B0⊗J) lifts to a map γ : F/IF → B0⊗J . This
defines a map F → B0⊗ J , and since F is free, it lifts to a map F → R0⊗ J ,
defined by g1, . . . , gr ∈ R0 ⊗ J . Now take f ′′i = f ′i − gi. The gi cancel out the
images of δ1, and so we find the new δ0 = 0, so the new B′ is flat over C ′.

(b) Suppose one such extension B′
1 exists. Let R0 = k[x1, . . . , xn] be a

polynomial ring of which B0 is a quotient, with kernel I0. Then the map
R0 → B0 lifts to a map of R = C[x1, . . . , xn] to B and to a map of R′ =
C ′[x1, . . . , xn] to B′

1, compatible with the map to B. These maps R→ B and
R′ → B′

1 are surjective, by Nakayama’s lemma.
For any other extension B′

2 of B, the map R→ B lifts to a map R′ → B′
2.

Thus every abstract deformation is also an embedded deformation (in many
ways perhaps), and we know that the embedded deformations are a torsor
under the action of Hom(I/I2, B ⊗ J) by (6.2). So comparing with the fixed
one B′

1, we get an element of this group corresponding to B′
2. Now if two of

these, B′
2 and B′

3, happen to be equivalent as abstract extensions of B choose
an isomorphism B′

2
∼= B′

3. Using this we obtain two maps R′ ⇒ B′
2, and hence

a derivation of R′ to B ⊗ J = B0 ⊗ J , by (4.5), which can be regarded as an
element of Hom(ΩR′/C′ , B0 ⊗ J).

Now we use the exact sequence (3.10) determining T 1,

Hom(ΩR/C , B ⊗ J)→ Hom(I/I2, B ⊗ J)→ T 1(B/C,B ⊗ J)→ 0,

to see that the ambiguity of embedding is exactly resolved by the image of the
derivations, and so the extensions B′ of B, up to equivalence, form a torsor
under T 1(B/C,B0⊗J), which is equal to T 1(B0/k,B0⊗J) by Base Change II
(Ex. 3.8).

Remark 10.1.1. For future reference, we note that given an extension B′ of
B over C ′, the group of automorphisms of B′ lying over the identity of B is
naturally isomorphic to the group T 0(B0/k, J ⊗B0) of derivations of B0 into
J ⊗B0. Indeed, we have only to apply (4.5) taking R = B′.

Example 10.1.2. It may happen that the obstructions vanish even when the
group T 2 is nonzero: (Ex. 3.3) gives an example with T 2 �= 0, but there are
no obstructions, since it is Cohen–Macaulay in codimension 2 (§8).

Now we pass to the global case. With the notation of (6.1), we suppose
we are given a scheme X0 over k and a deformation X of X0 over C. We look
for extensions of X to a deformation X ′ over C ′. We recall the notation
T i

X0
= T i(X0/k,OX0).
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Theorem 10.2. In the above situation:

(a) There are three successive obstructions to be overcome for the existence of
an extension X ′ of X over C ′, lying in H0(X0, T 2

X0
⊗J), H1(X0, T 1

X0
⊗J),

and H2(X0, T 0
X0
⊗ J).

(b)Let Def(X/C,C ′) be the set of all such extensions X ′, up to equivalence.
Having fixed one such X ′

1, there is an exact sequence

0→ H1(X0, T 0
X0
⊗ J)→ Def(X/C,C ′)→ H0(X0, T 1

X0
⊗ J)→

→ H2(X0, T 0
X0
⊗ J).

Proof. (a) Suppose we are given X. For each open affine subset Ui ⊆ X there
is an obstruction lying in H0(Ui, T 2

Ui
⊗ J) for the existence of a deformation

U ′
i over Ui, by (10.1). These patch together to give a global obstruction δ1 ∈

H0(X0, T 2
X0
⊗ J).

If this obstruction vanishes, then for each Ui there exists a deformation
U ′

i over Ui. For each Uij = Ui ∩Uj we then have two deformations U ′
i |Uij

and
U ′

j |Uij
. By (10.1) again, their difference gives an element in H0(Uij , T 1 ⊗ J).

The difference of three of these is zero on Uijk, so we get the second obstruction
δ2 ∈ H1(X0, T 1

X0
⊗ J).

If this obstruction vanishes, then we can modify the deformations U ′
i so

that they become equivalent on the overlap Uij . Choose isomorphisms ϕij :
U ′

i |Uij

∼→ U ′
j |Uij

for each ij. On the triple intersection Uijk, composing three
of these gives an automorphism of U ′

i |Uijk
by (10.1.1), which gives an element

in H0(Uijk, T 0 ⊗ J). On the fourfold intersection, these agree, so we get an
obstruction δ3 ∈ H2(X0, T 0

X0
⊗ J).

If this last obstruction also vanishes, we can modify the isomorphisms ϕij

so that they agree on the Uijk, and then we can glue the extensions U ′
i to get

a global extension X ′.
(b) Suppose now we are given one fixed extension X ′

1 of X over C ′. If X ′
2

is another extension, then on each open affine Ui we have two, and their
difference gives an element of H0(Ui, T 1 ⊗ J) by (10.1). These glue together
to give a global element of H0(X0, T 1

X0
⊗ J). We have already seen in part

(a) above that conversely, given a global element of H0(X0, T 1
X0
⊗ J), it gives

extensions over the open sets Ui that are isomorphic on the intersections Uij ,
and in that case there is an obstruction in H2(X0, T 0

X0
⊗ J) to gluing these

together to get a global extension.
Now suppose two extensions X ′

2 and X ′
3 give the same element in

H0(X0, T 1
X0
⊗ J). This means that they are isomorphic on each open affine

Ui. Choose isomorphisms ϕi : X ′
2|Ui

∼→ X ′
3|Ui

. On the intersection Uij , we get
ψij = ϕ−1

j ◦ ϕi, which is an automorphism of X ′
2|Uij

and so defines a section
of T 0⊗J over Uij by (10.1.1). These agree on the triple overlap, so we get an
element of H1(X0, T 0

X0
⊗J). The vanishing of this element is equivalent to the

possibility of modifying the isomorphisms ϕi so that they will agree on the
overlap, which is equivalent to saying that X ′

2 and X ′
3 are globally isomorphic.

Thus we get the exact sequence for Def(X/C,C ′) as claimed.
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Remark 10.2.1. This theorem suggests the existence of a spectral sequence
beginning with Hp(X,T q ⊗ J) and ending with some groups of which the H2

would contain the obstruction to lifting X, and the H1 = Def(X/C,C ′) would
classify the extensions if they exist. But I will not attempt to say where such
a spectral sequence might come from. If you really want to know, you will
have to look in another book! Try [73] or [92].

Remark 10.2.2. As in (10.1.1) we observe that given an extension X ′

of X over C ′, the group of automorphisms of X ′ lying over the identity
automorphism of X is naturally isomorphic to the group H0(X0, T

0
X0
⊗ J).

Just apply (10.1.1) and glue.

Corollary 10.3. If X0 is nonsingular, then

(a) There is just one obstruction in H2(X0, TX0 ⊗ J) for the existence of an
extension X ′ of X over C ′.

(b) If such extensions exist, their equivalence classes form a torsor under
H1(X0, TX0 ⊗ J).

Proof. In this case the sheaves T 1
X0

and T 2
X0

are zero (4.9).

Using this local study of abstract deformations, we can complete the results
of §6 in case there are local obstructions.

Proposition 10.4. Let Y0 be a closed subscheme of X0 over k, and let X, Y ,
X ′, C, C ′, J be as in (6.2). Then there is an obstruction β∈H0(Y0, T 2

Y0/k⊗k J)
for the local existence of extensions of Y over C ′. If this obstruction vanishes,
then as in (6.2b) there is the obstruction α ∈ H1(Y0,N0 ⊗k J) for the global
existence of Y ′, and the conclusions of (6.2) hold.

Proof. If we examine the proof of (6.2), we see that what was missing was
the existence of an affine covering of Y0 where local extensions exist. Since for
affine schemes abstract and embedded obstructions are the same (Ex. 10.1),
the obstruction for each open affine subset lies in the corresponding T 2 group.
These glue together to form the T 2 sheaf, so the obstruction β is a global
section of this sheaf. Once β vanishes, the rest of the proof of (6.2) carries
through.

Reference. The applications of the T i functors to deformation theory are in
the paper of Lichtenbaum and Schlessinger [96].

Exercises.

10.1. Let Y0 be a closed subscheme of an affine nonsingular variety X0 over k.
Let Y ⊆ X be a deformation of Y0 ⊆ X0 over C, and let X ′ be an extension of
X to C′, in the notation of (6.1). Show that an extension Y ′ of Y over C′ as an
abstract scheme exists if and only if an extension Y ′ exists as a closed subscheme of
X ′. In fact, any abstract extension Y ′ can be embedded in X ′. Hint: One direction
is obvious. For the other, use the infinitesimal lifting property of smooth morphisms
(§4). Note that the hypothesis X0 affine is essential.
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10.2. If X0 over k is a locally complete intersection scheme, or is locally isomorphic
to a Cohen–Macaulay codimension 2 scheme or a Gorenstein codimension 3 scheme,
then the first of the three obstructions in (10.2a) vanishes.

10.3. In (5.3.1) we called a scheme rigid if all of its deformations over the dual
numbers were trivial. Show that every deformation of a rigid scheme over any Artin
ring is trivial.

10.4. If X is a reduced locally complete intersection curve over k, then there are
no obstructions to deformations of X. Furthermore, every local deformation of a
singular point of X can be extended to a global deformation of X (as an abstract
variety).

10.5. Let X be a nonsingular projective surface and let Y ⊆ X be an exceptional
curve of the first kind (cf. (6.2.2)). Let X0 be the nonsingular surface obtained by
blowing down Y to a point P ∈ X0 [57, V, 5.7]. We will show that any deformation
of X arises from deforming X0 or moving the point P ∈ X0, or both.

(a) First show that there is an exact sequence relating the tangent sheaves of X and
X0,

0 → TX → f∗TX0 → OY (1) → 0.

(b) Show that R1f∗TX = 0, so there is an exact sequence

0 → f∗TX → TX0 → k2 → 0,

from which we deduce a sequence of cohomology

0 → H0(X, TX) → H0(X0, TX0) → k2 → H1(X, TX) →
→ H1(X0, TX0) → 0

and an isomorphism
H2(X, TX) ∼= H2(X0, TX0).

(c) Interpret this as follows. First of all, the obstructions to deforming X are the
same as the obstructions to deforming X0. Next, think of k2 as the deformations
of P inside X0. If the infinitesimal automorphisms of X0 (that is, H0(X0, TX0))
map surjectively to deformations of P in X0, then deformations of X are just
given by deformations of X0. Otherwise, moving P gives nontrivial deformations
of X.

(d) Apply this to the nonsingular cubic surface in P
3, obtained by blowing up six

points of P
2 [57, V, §4]. The projective space P

2 itself is rigid (H1(TP2) = 0) and
it has a group of automorphisms of dimension 8. Thus any four points in general
position can be moved to any other four points in general position. We find that
P

2 with four points blown up is still rigid, but has no infinitesimal automor-
phisms. Thus the deformations of the cubic surface depend on the position of
the fifth and sixth points. We find that the cubic surface, as an abstract surface,
is unobstructed, and has a four-dimensional space of deformations. (See (20.2.2)
for another approach.)

10.6. Deforming a scheme with a line bundle. Suppose we are given a nonsin-
gular scheme X0 over k and a line bundle L0 on X0. We consider deformations of the
pair (X0, L0), that is, for an Artin ring C, pairs (X,L), where X is a deformation
of X0 over C and L is a deformation of L0 on X.
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(a) With the usual notation (6.1), show that if (X ′, L′) over C′ is an extension of
(X,L) over C, then the automorphisms of (X ′, L′) over (X,L) are given by
H0(X0,PL0), where, for any nonsingular scheme X with a line bundle L, we
define the sheaf of principal parts PL as an extension

0 → OX → PL → TX → 0

defined by the cohomology class c(L) ∈ H1(X,ΩX) = Ext1(TX ,OX) and c(L)
is defined as the image of the class of L in H1(X,O∗

X) under the map d log :
O∗
X → Ω1

X (cf. [57, V, Ex. 1.8]).
(b) Show that the obstruction to extending a deformation (X,L) over C to one over

C′ is in H2(X0,PL0 ⊗ J) and that when extensions exist, they are classified by
H1(X0,PL0 ⊗ J).

(c) In the cohomology sequence

· · · → H1(OX0) → H1(PL0) → H1(TX0)
δ→ H2(OX0) → · · ·

coming from the exact sequence of (a) above, we can interpret H1(PL0) as
deformations of the pair (X0, L0), and its image in H1(TX0) as the deformation
of the underlying scheme X0. For a given deformation of X0, we can interpret
its image under δ as the obstruction to extending the line bundle L0. Show that
the map δ is given by cup product with the cohomology class c(L0) ∈ H1(Ω1

X0) :
H1(TX0) ×H1(Ω1

X0) → H2(OX0), using the pairing TX0 ⊗Ω1
X0 → OX0 of dual

sheaves.
(d) If X0 is embedded in P

n
k , show that there is an exact sequence

0 → PL0 → OX0(1)n+1 → NX0/Pn → 0,

where L0 = OX0(1). Thus we obtain a map H0(NX0/Pn) → H1(PL0) expressing
the deformation of the pair (X0, L0) induced by a deformation of X0 in P

n.

For more details on deformations of pairs (X,L), see [152, 3.3.3].

10.7. Abelian surfaces. Let X be an abelian surface. Then hi(OX) = 1, 2, 1 for
i = 0, 1, 2 respectively. The tangent bundle TX is isomorphic to te ⊗ OX , where te
is the tangent space at the origin e ∈ X. Thus H2(TX) �= 0 and it appears as if
there might be obstructions to deforming X. However, assuming char k �= 2, the
obstructions vanish [129, p. 237].

(a) If α : X1 → X2 is an isomorphism of nonsingular varieties, then α sends the
obstruction to deforming X1 to the obstruction to deforming X2.

(b) Now let i : X → X be the automorphism of our abelian surface that sends x
to −x in the group law. If τ ∈ H2(TX) is the obstruction to deforming X, then
i∗τ = τ .

(c) Observe that i∗ acts by −1 on the tangent space te at the origin. Hence also it
acts by −1 on H1(OX), which is isomorphic to the tangent space of the dual
abelian surface X∗ at the origin.

(d) On the abelian surface X, H2(TX) ∼= te ⊗ H2(OX). Furthermore, H2(OX) ∼=∧2H1(OX). Therefore i∗ acts by +1 on H2(OX), and hence by −1 on H2(TX).
So i∗τ = −τ . This shows that τ = 0 (at least assuming char k �= 2).
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11. Obstruction Theory for a Local Ring

Let (A,m) be a local ring with residue field k. We want to investigate pro-
perties of A in terms of homomorphisms of A to local Artin rings and how
these homomorphisms lift to larger Artin rings. This is useful for studying
local properties of the scheme representing a functor, for example the Hilbert
scheme, because it allows us to translate properties of the local ring on the
representing scheme into properties of the functor applied to local Artin rings.

We have already seen one case of this kind of analysis (4.7), where the
property of A being a regular local ring is characterized by always being able
to lift maps into Artin rings—the infinitesimal lifting property of smoothness
(or regularity). (For simplicity we assume k algebraically closed.)

In this section we take this analysis one step further, by considering cases
in which the homomorphisms do not always lift. For this purpose we define
the notion of an obstruction theory.

Definition. Let (A,m) be a local ring with residue field k. We will consider
sequences 0→ J → C ′ → C → 0 as in (6.1). An obstruction theory for A is a
vector space V over k, together with, for every sequence 0→ J → C ′ → C → 0
as above, and for every homomorphism u : A→ C,

0→ J → C ′ →

A
↓ u
C → 0

an element ϕ(u,C ′) ∈ V ⊗ J , satisfying two properties:

(a) ϕ(u,C ′) = 0 if and only if u lifts to a map u′ : A→ C ′,
(b)ϕ is functorial in the sense that if K ⊆ J is a subspace, then the element

ϕ(u,C ′/K) associated with u and the sequence 0→ J/K → C ′/K → C →
0 is just the image of ϕ(u,C ′) under the natural map V ⊗ J → V ⊗ J/K.

Example 11.0.1. We have already seen a typical example of an obstruction
theory in studying the Hilbert scheme. Let Y0 be a closed subscheme of X0 =
P

n
k , and assume that Y0 has no local obstructions to its deformations (e.g., Y0 is

nonsingular, or locally complete intersection, . . . ). Then by (6.2), obstructions
to deforming Y0 lie in H1(Y0,NY0/X0 ⊗ J). Let y be the corresponding point
of the Hilbert scheme H, and let A be the local ring of y on H. Then a
homomorphism of A to a local Artin ring C corresponds to a deformation of
Y0 over C as a closed subscheme of P

n, according to the universal property
of the Hilbert scheme (1.1a). To lift u to a homomorphism u′ : A → C ′

corresponds to extending the deformation Y to a deformation Y ′ over C ′.
Thus if we take V = H1(Y0,NY0/X0), we have an obstruction theory for the
local ring A.

Example 11.0.2. Suppose that A is a quotient of a regular local ring P by
any ideal I, and assume that I ⊆ m2

P . Then we can construct what we might
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call the “canonical” obstruction theory for A as follows. Take VA to be the
dual vector space (I/mP I)∗. Given a diagram as in the definition, we can
always lift u to a homomorphism f : P → C ′, since P is regular (4.4):

0 → I → P → A → 0
↓ f̄ ↓ f ↓ u

0 → J → C ′ → C → 0

This induces a map f̄ : I → J , which factors through I/mI, since J is a
k-vector space. This gives us an element ϕ ∈ Hom(I/mI, J) ∼= VA ⊗ J .

We need to show that ϕ is independent of the choice of lifting f . So let
f ′ : P → C ′ be another lifting. Then by (4.5), f ′ − f is a derivation of P to
J . Since I ⊆ m2, it follows that (f ′ − f)(I) ⊆ mJ = 0.

Now condition (a) is clear: if ϕ(u,C ′) = 0, then f factors through A, so
that u lifts. Conversely, if u lifts, this gives a lifting f ′ : P → C ′ that vanishes
on I, so ϕ = 0.

Condition (b) is obvious by construction.
Note that in this example, dimVA = dim(I/mI), which is the minimal

number of generators of I.
Our main result is a converse to this example.

Theorem 11.1. Let A be a local ring that can be written as a quotient of a
regular local ring P by an ideal I ⊆ m2

P , and let (V, ϕ) be an obstruction theory
for A. Then there is a natural inclusion of VA (11.0.2) into V . In particular,
I can be generated by at most dimV elements.

Proof. Note first that we cannot expect to get the exact number of generators
for I, because if (V, ϕ) is an obstruction theory, any bigger vector space V ′

containing V will also be one.
We apply the obstruction theory V to a particular case. Take 0 → J →

C ′ → C → 0 to be the sequence, for any integer n,

0→ (I + mn)/(mI + mn)→ P/(mI + mn)→ A/mn → 0,

and take the natural quotient map u : A→ A/mn. By a standard isomorphism
theorem,

(I + mn)/(mI + mn) ∼= I/I ∩ (mI + mn) = I/(mI + (I ∩mn)).

By the Artin–Rees lemma, we have I∩mn ⊆ mI for n� 0. So for n sufficiently
large we can write

0→ I → P → A → 0
↓ f̄ ↓ f ↓ u

0→ I/mI → P/(mI + mn)→ A/mn → 0

and our obstruction theory gives us an element ϕ ∈ V ⊗I/mI ∼= Homk(VA, V ).
I claim that ϕ is injective as a homomorphism of VA to V . Indeed, let w ∈ VA,
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w �= 0. Then w gives a surjective homomorphism w : I/mI → k. If we let
K = kerw, and divide the exact sequence by K, as in the definition of the
obstruction theory above, the composed map f̄ : I → k is still nonzero. So u
does not lift; hence the image of ϕ in V ⊗ k is nonzero. Thus ϕ : VA → V is
injective as claimed. Since the minimal number of generators of I is equal to
dimVA, the conclusion follows.

Corollary 11.2. Let (A,m) be a local ring that can be written as a quotient
of a regular local ring P of dimension n = dim m/m2. If A has an obstruction
theory in a vector space V , then dimA ≥ n− dimV . Furthermore, if equality
holds, then A is a local complete intersection.

Proof. Indeed, dimA ≥ dimP −# generators of I, and equality makes A a
local complete intersection ring by definition.

Applying this to the Hilbert scheme, we obtain the proof of (1.1d):

Theorem 11.3. Let Y be a locally complete intersection subscheme of the
projective space X = P

n
k . Then the dimension of the Hilbert scheme H at the

point y ∈ H corresponding to Y is at least h0(Y,N )−h1(Y,N ). Furthermore,
in case of equality, H is a locally complete intersection scheme at that point.

Proof. Let A be the local ring of y on H. Then V = H1(Y,N ) gives an
obstruction theory for A (11.0.1). On the other hand, A has embedding
dimension equal to h0(Y,N ) by (2.4). Hence the result follows from (11.2).

Remark 11.3.1. As an application of this result, we will prove in the next
section the classical result, stated by M. Noether [125, I, §2] for nonsingular
curves in P

3, that every component of the Hilbert scheme of locally Cohen–
Macaulay curves of degree d in P

3 has dimension at least 4d.

Remark 11.3.2. The corollary (11.2) generalizes the result (4.7) that a local
ring is regular if it has the infinitesimal lifting property, because in that case
we can take V = 0 as an obstruction theory.

References for this section. The results of this section are certainly con-
sequences of the general deformation theories of Laudal [92], Illusie [73], and
Rim [141], but for a more direct approach, I have given a simplified version
of the proof due to Mori [109, Prop. 3]. A slightly different proof appears in
the book of Kollár [88, p. 32].

Exercise.

11.1. Show that the canonical obstruction space VA (11.0.2) is isomorphic to
T 1(A/k, k).
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12. Dimensions of Families of Space Curves

A classical problem, studied by G. Halphen and M. Noether in the 1880s, and
the subject of considerable activity one hundred years later, is the problem of
classification of algebraic space curves. Here we mean closed one-dimensional
subschemes of P

n, while the classical case was irreducible nonsingular curves
in P

3. See [57, IV, §6], [59], [61], [51] for some surveys of the problem.
To begin with, let us focus our attention on nonsingular curves in P

3.
These form an open subset of the Hilbert scheme, so the problem is to find
which pairs (d, g) can be the possible degree and genus of a curve, and then
for each such (d, g) to find the irreducible components and the dimensions
of the corresponding parameter space Hd,g. The problem of determining the
possible (d, g) pairs has been solved by Gruson and Peskine [50] (see also [62]).
Easy examples show that Hd,g need not be irreducible [57, IV, 6.4.3]. So we
consider the problem of dimension.

Max Noether’s approach to the problem [125, pp. 18, 19] goes like this.
The choice of an abstract curve of genus g depends on 3g − 3 parameters.
The choice of a divisor of degree d on the curve (up to linear equivalence) is
another g parameters. If d ≥ g + 3, a general such divisor D is nonspecial, so
by the Riemann–Roch theorem, the dimension of the complete linear system
|D| is d−g. Here we must choose a 3-dimensional subsystem, and such a choice
depends on 4(d− g− 3) parameters (the dimension of the Grassmann variety
of P

3’s in a P
d−g). Now add 15 parameters for an arbitrary automorphism of

P
3. Putting these together, we find that the dimension of the family of general

curves of genus g, embedded with a general linear system of degree d ≥ g+3,
is 4d.

Refining his argument (but still speaking always of curves that are general
in the variety of moduli, and general linear systems on these), Noether claimed
that:

(a) If d ≥ 3
4 (g + 4), the family has dimension 4d.

(b) If d < 3
4 (g + 4), the family has dimension ≥ 4d.

These methods do not take into account curves whose moduli are spe-
cial, and therefore may have linear systems of kinds that do not appear on
general curves, and of course they do not apply to singular or reducible curves.
Furthermore, Noether’s method depends on knowing the dimension of the
variety of moduli (3g − 3), the dimension of the Jacobian variety (g), the
dimension of Grassmann varieties, and also depends on having confidence in
the method of “counting constants,” which sometimes seems more like an art
than a science.

In this section we will use an entirely different method, the infinitesimal
study of the Hilbert scheme, to prove the following theorem.

Theorem 12.1. Every irreducible component of the Hilbert scheme of locally
Cohen–Macaulay curves of degree d and arithmetic genus g in P

3 has dimen-
sion ≥ 4d.
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Proof. These curves are locally Cohen–Macaulay and of codimension 2 in
P

3, so there are no local obstructions to embedded deformations, and hence
the obstructions to global deformations lie in H1(C,NC) (8.5). Now using the
dimension theorem for a local ring with an obstruction theory (11.0.1) and
(11.2), we obtain

dimC Hilb ≥ h0(C,NC)− h1(C,NC).

Thus we are reduced to the problem of evaluating the cohomology of the
normal sheaf NC .

We do an easy case first. If C is irreducible and nonsingular, then NC is
locally free and is just the usual normal bundle to the curve. It belongs to an
exact sequence

0→ TC → TP3 |C → NC → 0,

where T denotes the tangent bundle of C (resp. P
3). On the other hand, the

tangent bundle of P
3 belongs to an exact sequence

0→ OP3 → OP3(1)4 → TP3 → 0.

From these two sequences we obtain degNC = 4d + 2g − 2, and so by the
Riemann–Roch theorem χ(NC) = h0(NC) − h1(NC) = 4d. This proves the
theorem for nonsingular C.

The general case is a bit more technical, because we do not have the same
simple relationship between the normal sheaf and the tangent sheaves. But
we have assumed that C is locally Cohen–Macaulay, so there is a resolution

0→ E → F → IC → 0, (6)

where E ,F are locally free sheaves on P
3. Taking Hom(·,OP), we find that

0→ OP → F∨ → E∨ → Ext1(IC ,OP)→ 0. (7)

Since C has codimension 2, this Ext1(IC ,OP) is isomorphic to Ext2(OC ,OP),
which is just ωC(4), where ωC is the dualizing sheaf of C.

Tensoring the sequence (7) with OC , we therefore get

F∨ ⊗OC → E∨ ⊗OC → ωC(4)→ 0. (8)

On the other hand, applying Hom(·,OC) to the sequence (6) we obtain

0→ NC → F∨ ⊗OC → E∨ ⊗OC → Ext1(IC ,OC)→ 0. (9)

Comparing (8) and (9), we see that Ext1(IC ,OC) ∼= ωC(4).
Now we take Euler characteristics and obtain

χ(NC) = χ(F∨ ⊗OC)− χ(E∨ ⊗OC) + χ(ωC(4)).
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Suppose E has rank r and F has rank r + 1. From the sequence (6) we see
that they both have the same first Chern class c1(E) = c1(F) = c. Thus the
degree of the locally free sheaves F∨ ⊗ OC and E∨ ⊗ OC on C is just −cd.
Now applying the Riemann–Roch theorem (which works on any curve C for
the restriction of locally free sheaves from P

3), and using Serre duality to note
that χ(ωC(4)) = −χ(OC(−4)), we get

χ(NC) = cd+ (r + 1)(1− g)− [cd+ r(1− g)]− [−4d+ 1− g] = 4d.

Remark 12.1.1. If we apply the same argument to (say) locally complete
intersection curves of degree d and arithmetic genus g in P

4 we obtain
dim Hilb ≥ 5d+1−g. (There is a similar formula for P

n, n > 4.) This number
can become negative for large values of g, making the result worthless. This
led Joe Harris to ask:

(a) Can you find a better (sharp) lower bound for the dimension of the Hilbert
scheme?

(b) Are there any “semirigid” curves in P
n, i.e., curves whose only deforma-

tions come from automorphisms of P
n, besides the rational normal curves

of degree n?

References for this section. Since the work of Noether, the fact that the
dimension of the families of curves of degree d in P

3 is at least 4d seems to have
passed into folklore. The first complete proof in the case of locally Cohen–
Macaulay curves, as far as I know, is the one due to Ein [23, Lemma 5],
as explained to me by Rao and reproduced here. Theorem 12.1 has been
generalized by Rao and Oh to the case of one-dimensional closed subschemes
of P

3 that may have isolated or embedded points [128].

Exercises.

12.1. If C is a curve in P
3 with dimC Hilb = 4d, then the Hilbert scheme is a

locally complete intersection at the point corresponding to C.

12.2. Curves passing throughmmm general points in P
3

P
3

P
3. LetH be an irreducible

component of the Hilbert scheme of curves of degree d and genus g in P
3, and let m

be an integer. We ask whether a general curve in H can be made to pass through
m general points in P

3.
If H has dimension N , then the dimension of the family of pairs Z ⊆ C, where

C ∈ H and Z is a set of m points on C, is N +m. On the other hand, the dimension
of the Hilbert scheme of sets of m points in P

3 is 3m. In order for a general Z to lie
on a curve C ∈ H, we must have N +m ≥ 3m, i.e., N ≥ 2m.

This condition in general is not sufficient. For example, the nonsingular curves of
degree 5 and genus 2 in P

3 form an irreducible component H of dimension 20. They
are all ACM curves, the general one being a curve of bidegree (2, 3) on a nonsingular
quadric surface. However, one of these curves C can never contain 10 general points,
because C lies on a quadric surface, and a quadric surface can contain only 9 general
points of P

3.
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Thus it is reasonable to ask, if N ≥ 2m, and if the question is not impossible
by reason of the degree of surfaces containing a general curve C, does the general
curve C ∈ H pass through m general points in P

3? This problem is studied in the
thesis of D. Perrin [131]. The answer is not known in general, but it seems likely to
be true at least for ACM curves. Here we treat a special case.

(a) For any integer r ≥ 1, we consider a nonsingular curve C with a resolution of
the form

0 → OP(−r − 1)r → OP(−r)r+1 → IC → 0,

This is called a linear resolution because the entries in the matrix defining the
first map are all linear forms. Show that C is an ACM curve of degree d =
1
2
r(r + 1) and genus g = 1

6
(r − 1)(r − 2)(2r + 3).

(b) By taking Hom of the resolution into OC , show that one obtains an exact
sequence

0 → NC → OC(r)r+1 → OC(r + 1)r → ωC(4) → 0.

Use the fact that h0(IC(r−1)) = 0 and C is ACM to show thatH0(NC(−2)) = 0.
(c) Consider the Hilbert-flag scheme H{Z,C} (Ex. 6.8) parametrizing pairs Z ⊆ C,

where C is one of the curves in (a), and we take Z to be a set m = 2d distinct
points on C, linearly equivalent to twice the hyperplane section. Then there is
an exact sequence

0 → NC(−2) → NC → NC |Z → 0.

Show that χ(NC(−2)) = 0 and use b) above to conclude that H1(NC(−2)) = 0,
and so H0(NC) → H0(NC |Z) is an isomorphism. Since NC |Z is a rank 2 vector
bundle on a set of 2d points, its h0 = 4d, h1 = 0. We conclude from this that
h0(NC) = 4d, h1(NC) = 0, and that T → H0(NZ) is also an isomorphism, where
T is the tangent space to H{Z,C} (Ex. 6.8a).

(d) From (c) it follows that the Hilbert scheme of the curves C is nonsingular of
dimension 4d. Since H{Z,C} is fibered over this by sets of 2d points, it is also
smooth, of dimension 6d = 3m. Now the “forgetful” map from H{Z,C} to the
Hilbert schemeH{Z} of Z’s is a morphism from one smooth scheme of dimension
3m to another smooth scheme of the same dimension, inducing an isomorphism
on the Zariski tangent spaces at the points we have considered. It follows that it
is étale and dominant, so a general set of m = 2d points is contained in a curve
C of the family of these ACM curves, which has dimension N = 4d = 2m.

13. A Nonreduced Component of the Hilbert Scheme

In the classification of algebraic space curves, the idea that curves form
algebraic families, and that one could speak of the irreducible components
and dimensions of these families, goes back well into the nineteenth century.
The observation that the family of curves of given degree and genus in P

3

need not be irreducible is due to Weyr (1873). Tables of families with their
irreducible components and dimensions were computed (independently) by
Halphen and Noether in 1882. Now these notions can be made rigorous by
speaking of the Chow variety or the Hilbert scheme, and for the question of
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irreducible components and dimensions of families of smooth space curves, the
answer is the same in both cases.

With Grothendieck’s construction of the Hilbert scheme, a new element
appears: the families of curves, which up to then were described only as
algebraic varieties, now have a scheme structure. In 1962, only a few years
after Grothendieck introduced the Hilbert scheme, Mumford [112] surprised
everyone by showing that even for such nice objects as irreducible nonsingular
curves in P

3, there may be irreducible components of the Hilbert scheme that
are generically nonreduced, that is to say that as schemes, they have nilpotent
elements in their structure sheaves at all points of the scheme.

In this section we will give Mumford’s example.

Theorem 13.1. There is an irreducible component of the Hilbert scheme of
smooth irreducible curves in P

3 of degree 14 and genus 24 that is generically
nonreduced.

Proof. The argument falls into three parts:

(a) We construct a certain irreducible family U of smooth curves of degree 14
and genus 24, and show that the dimension of the family is 56.

(b) For any curve C in this family, we show that H0(C,NC) has dimension
57. This gives the Zariski tangent space to the Hilbert scheme at the
point C.

(c) We show that the family U is not contained in any other irreducible family
of curves with the same degree and genus, of dimension > 56.

Property (c) shows that the family U is actually an open subset of an irre-
ducible component of the Hilbert scheme, of dimension 56. Hence the scheme
Ured is integral, and therefore nonsingular on some open subset V ⊆ Ured.
If C ∈ V , then property (b) shows that U is not smooth at the point C; hence
U �= Ured at the point C. In other words, U is nonreduced along the open
set V .

Step (a). The construction. Let X be a nonsingular cubic surface in P
3,

let H denote the hyperplane section of X, and let L be one of the 27 lines on
X. We consider curves C in the linear system |4H + 2L|. If we take L to be
the sixth exceptional curve E6, then in the notation of [57, V, §4], the divisor
class is (12; 4, 4, 4, 4, 4, 2), and by [loc. cit. 4.12] this class is very ample, so
the linear system contains irreducible nonsingular curves C. The formulas of
[loc. cit.] show that the degree is d = 14 and the genus is g = 24. The family
U we wish to consider consists of all nonsingular curves C in the above linear
system, for all choices of X a smooth cubic surface and L a line on X.

The cubic surfaces move in an irreducible family of dimension 19, and
as they move, the lines on them are permuted transitively, so that U is an
irreducible family of curves. Since PicX is discrete, the only algebraic families
of curves on X are the linear systems. So to find the dimension of U we must
add 19 to the dimension of the linear system |C|, which is h0(OX(C)) − 1.



13. A Nonreduced Component of the Hilbert Scheme 93

(Note that since d > 9, each of our curves C is contained in a unique cubic
surface.) Consider the exact sequence

0→ OX → OX(C)→ OC(C)→ 0.

Since h0(OX) = 1 and h1(OX) = 0, we obtain dim |C| = h0(OC(C)). The
linear system OC(C) on C has degree C2, which can be computed by [loc. cit.]
as 60. This is greater than 2g − 2, so the linear system is nonspecial on C,
and by Riemann–Roch its dimension is 60 + 1− 24 = 37.

Adding, we obtain dimU = 19 + 37 = 56.

Step (b). Computation of h0(C,NC). We use the exact sequence of normal
bundles for the nonsingular curve C on the nonsingular surface X,

0→ NC/X → NC → NX |C → 0.

Now NC/X = OC(C), which as we saw above is nonspecial, with h0 = 37.
Since X is a cubic surface, NX = OX(3), so NX |C = OC(3), and we obtain

h0(NC) = 37 + h0(OC(3)).

By Riemann-Roch,

h0(OC(3)) = 3 · 14 + 1− 24 + h1(OC(3)) = 19 + h1(OC(3)).

By duality on C, h1(OC(3)) = h0(ωC(−3)). By the adjunction formula on
X, ωC = OC(C + KX) = OC(C − H) = OC(3H + 2L). Thus h1(OC(3)) =
h0(OC(2L)). Now we use the sequence

0→ OX(2L− C)→ OX(2L)→ OC(2L)→ 0.

Note that 2L − C = −4H, which has h0 = h1 = 0. Hence h0(OC(2L)) =
h0(OX(2L)) = 1, since the divisor 2L is effective, but does not move in a
linear system.

Thus h1(OC(3)) = 1, h0(OC(3)) = 20, and h0(NC) = 57.

Step (c). To show that U is not contained in a larger family of dimension
> 56, we proceed by contradiction. If C ′ ∈ U ′ were a general curve in this
supposed larger family U ′, then C ′ would be smooth, still of degree 14 and
genus 24, but would not be contained in any cubic surface, because our family
U contains all those curves that can be obtained by varying X and varying C
on X. From the exact sequence

0→ IC′ → OP3 → OC′ → 0,

twisting by 4, we obtain

0→ H0(IC′(4))→ H0(OP3(4))→ H0(OC(4))→ · · · .
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The dimension of the middle term is 35; that of the term on the right, by
Riemann–Roch, 33. Hence h0(IC′(4)) ≥ 2. Take two independent quartic
surfaces F, F ′ containing C ′. Since C ′ is not contained in a cubic (or lesser-
degree) surface, F, F ′ are irreducible and distinct, so their intersection has
dimension 1, and provides us with a linkage from C ′ to the residual curve
D = F ∩ F ′ − C ′. Computation of degree and genus (Ex. 8.4) shows that
degD = 2, and pa(D) = 0. Note that D need not be irreducible or reduced.
However, one knows that locally Cohen–Macaulay curvesD with d = 2, pa = 0
are just the plane conics (possibly reducible). In particular, D is ACM. This
property is preserved by linkage, so C ′ is also ACM (Ex. 8.4d).

One can compute the dimension of the family of ACM curves C ′ as follows.
The Hilbert scheme of plane conics D in P

3 has dimension 8. The vector space
of equations of quartics F containingD isH0(ID(4)), which has dimension 26.
The choice of a two-dimensional subspace (generated by F, F ′) is a Grassmann
variety of dimension 48. Thus the dimension of the family of curves C ′ as above
is 8 + 48 = 56 and so this family cannot contain the family U .

This completes the proof of Mumford’s example.

Example 13.1.1. A nonsingular 3-fold with obstructed deformations.
In the same paper, Mumford observed that the above example, by blowing
up the curve, produces a 3-fold with obstructed deformations. We outline the
argument.

Let C ⊆ P
3 be a nonsingular curve. Let f : X → P

3 be obtained by
blowing up C. Let E ⊆ X be the exceptional divisor. Then f : E → C is the
projective space bundle P(I/I2) over C, where I = IC/P3 .

We make use of the sequence of differentials

0→ f∗Ω1
P3 → Ω1

X → Ω1
X/P3 → 0,

the identification Ω1
X/P3

∼= Ω1
E/C , and the Euler sequence

0→ Ω1
E/C → f∗(I/I2)(−1)→ OE → 0.

Dualizing we obtain sequences

0→ TX → f∗TP3 → TE/C(−1)→ 0

and
0→ OE(−1)→ f∗NC → TE/C(−1)→ 0.

Now the cohomology of f∗TP3 is the same as TP3 ; the cohomology of OE(−1)
is zero, and f∗NC has the same cohomology as NC . Making the substitutions
we obtain an exact sequence

0→ H0(TX)→ H0(TP3)→ H0(NC)→ H1(TX)→ 0
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and an isomorphism
H1(NC) ∼= H2(TX).

The interpretation is that every infinitesimal deformation of X comes from a
deformation of C, and that those deformations of C coming from automor-
phisms of P

3 have no effect on X. The obstructions to deforming X are equal
to the obstructions to deforming C in P

3.
If we now take C to the curve of Mumford’s example, it has obstructed

deformations, and so the 3-fold X also has obstructed deformations (10.3).

Remark 13.1.2. (13.1) gives an example of an obstructed embedded defor-
mation that is unobstructed as an abstract deformation.

References for this section. Mumford’s example appeared in his second
“pathologies” paper [112]. We have simplified his argument somewhat by using
liaison theory instead of some delicate arguments on families of quartic sur-
faces. The same paper also gives (13.1.1).

Kleppe devoted his thesis [81] to an analysis and expansion of Mumford’s
example. He generalized the Hilbert scheme to the Hilbert-flag scheme
(Ex. 6.8), parametrizing (for example) pairs of a curve in a surface in P

3,
and made an infinitesimal study of these schemes using Laudal’s deformation
theory [92]. Generalizing Mumford’s example, he found for every d ≥ 14 a
suitable g, and a family of nonsingular curves of degree d and genus g on
nonsingular cubic surfaces that form a nonreduced irreducible component of
the Hilbert scheme [81, 3.2.10, p. 192]. Further study of this situation appears
in his papers [82] and [84].

Gruson and Peskine [50] give an example of a family of nonsingular curves
of degree 13 and genus 18 lying on ruled cubic surfaces that has dimension 52
and h0(NC) = 54 for C in the family. They state that this is a nonreduced
component of the Hilbert scheme, but say only “on peut alors montrer” to
justify the hard part, which is to show that it is not contained in any larger
family. I have not yet seen a complete proof of this statement.

Martin–Deschamps and Perrin [100] show that when one considers curves
that need not be irreducible or reduced, then the Hilbert scheme is “almost
always” nonreduced. More precisely, they show the following. Excluding the
plane curves, one knows that the Hilbert scheme of locally Cohen–Macaulay
curves in P

3 of degree d and arithmetic genus g is nonempty if and only
if d ≥ 2 and g ≤ 1

2 (d − 2)(d − 3). They show that for d ≥ 6 and g ≤
1
2 (d − 3)(d − 4) + 1, the corresponding Hilbert scheme Hd,g has at least one
nonreduced irreducible component. For d < 6 there are also exact statements.
The nonreduced components correspond to the “extremal” curves having the
largest possible Rao module. These are almost always reducible, nonreduced
curves. The example of smallest degree that they find is for d = 3, g = −2.
In this case the Hilbert scheme H3,−2 has two irreducible components. One
component of dimension 12 has as its general curve the disjoint union of
three lines. The other, of dimension 13, has as its general curve a double
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structure of arithmetic genus −3 on a line, plus a reduced line meeting the
first with multiplicity 2. This component is nonreduced. By performing liaisons
starting with nonreduced components of singular curves, Martin–Deschamps
and Perrin obtain further examples of nonreduced irreducible components of
the Hilbert scheme of smooth curves [100, 5.4]. Their first example is for
(d, g) = (46, 213).

The example of Sernesi (Ex. 13.2) first appeared in [150], where he identi-
fied one of the families of ACM curves specializing to his curves, and concluded
that Hilb is singular there. It appears in [99, X, 5.8] as an intersection of two
components of Hilb, and again in [66, 5.18] with further explanations.

Recently, Ravi Vakil [164] surprised everyone again by showing that any
singularity you like will appear as a singularity of some Hilbert scheme.
However, his construction, being quite general, does not show that every
singularity can necessarily occur on a Hilbert scheme of nonsingular curves
in P

3.

Exercises.

13.1. Show that the hypothetical ACM curves C′ of degree 14 and genus 24 not
contained in cubic surfaces, mentioned in step (c) of (13.1), actually exist. The
general such curve is irreducible and nonsingular. They form a nonsingular open
subset of an irreducible component of the Hilbert scheme of dimension 56, and have
h-vector 1, 2, 3, 4, 3, 1 (Ex. 8.11).

13.2. An example of Sernesi. In this and the following exercise we give another
example of nonsingular curves in P

3 corresponding to singular points on the Hilbert
scheme. In this case the family in question is contained in the intersection of two
irreducible components of the Hilbert scheme.

(a) Let X be a nonsingular quartic surface containing two disjoint lines L1, L2. Let
C be a curve in the linear system 4H + L1 + L2 on X. Show that the linear
system 2H +L1 +L2 has no base points, so 4H +L1 +L2 is very ample. Hence
there exist irreducible nonsingular curves C in this linear system. Since C is
obtained by biliaison (Ex. 8.6) from the two skew lines L1, L2, show that it has
(d, g) = (18, 39) and that h1(IC(4)) = 1. In fact, the Rao module is just k in
degree 4.

(b) Show that h1(OC(4)) = 1, and then from the exact sequence of normal bundles
for C on X, show that H1(NC) �= 0 and h0(NC) > 72.

(c) Now let C be any integral (18, 39) curve with h0(IC(3)) = 0 and h1(IC(4)) = 1.

Case 1. If h0(IC(4)) = 0, then C can be linked by 5×5 (meaning an intersection
of two surfaces of degree 5) to a (7, 6) (meaning degree 7 and genus 6) curve
D with h1(ID(2)) = 1 and h1(OD(2)) = 0 (Ex. 8.4). Conclude from this that
h0(ID(2)) = 2, and then show that this is impossible: there is no (7, 6) curve
contained in two distinct surfaces of degree 2.

Case 2. If h0(IC(4)) �= 0, then C, being integral, is contained in an irreducible
quartic surface X. Show that h1(OC(4)) = 1. Consider the linear system C−4H.
From the exact sequence [63, 2.10]
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0 → OX → L(C − 4H) → ωC(−4) → 0

and duality on C, conclude that h0(L(C − 4H)) �= 0, so there is an effective
divisor D ∼ C−4H. In other words, C is obtained by biliaison from D. Since D
is a (2,−1) curve, and these form an irreducible family, show that the family C0

of all integral (18, 39) curves with h0(IC(3)) = 0 and h1(IC(4)) = 1 is irreducible
of dimension 71. This family includes the nonsingular curves described in (a).

(d) Since the dimension of the family C0 is less than 4d = 72, conclude (12.1) that
this family must lie in the closure of some larger irreducible component of the
Hilbert scheme.

13.3. Sernesi’s example, continued.

(a) If Ct is a flat family of (18, 39) curves whose special curve C0 lies in the family
C0 described in the previous exercise, but the general Ct does not lie in that
family, show that the general Ct must be an ACM curve, hence in one of the
two families described in (Ex. 8.12). We will show in fact that the special family
of (Ex. 13.2) lies in the closure of both of the families of (Ex. 8.12).

(b) Let C0 be a general curve in the family C0 of (Ex. 13.2). We can link it (Ex. 8.4)
by 4 × 6 to a (6, 3) curve D0 with h1(ID(2)) = 1 and h1(OD(2)) = 0. Then D0

is one of the curves described in (Ex. 8.8). Since we can link back in the other
direction, we may assume that D0 is general in that family and nonsingular.
From (Ex. 8.8) we know there is a flat family Dt specializing to D0, where the
general Dt is ACM. Since h0(IDt(4)) and h0(IDt(6)) are constant in the family,
we can link by a family of complete intersections 4 × 6 to obtain a family Ct
specializing to C0, where the general Ct is ACM and lies on a quartic surface.
Such ACM curves Ct belong to the family C1 of Case 1 of (Ex. 8.12).

(c) On the other hand, for a general C0 as above, put it on a nonsingular sextic
surface X ′

0. Show by an argument similar to the one used in (Ex. 13.2c) above
that the linear system C0 − 2H on X ′

0 is effective, and contains a (6, 3) curve
D0 as before. Since we can recover C0 = 2H + D0, we may assume that D0 is
general in its family. Consider again a family Dt specializing to D0 where the
general Dt is ACM. Put these curves in a family of sextic surfaces X ′

t, and let
Ct = 2H + Dt be obtained by biliaison on X ′

t. Then the general Ct is ACM.
This time, since h0(IDt(2)) = 0, we obtain h0(ICt(4)) = 0. So Ct belongs to the
family of ACM curves C2 of Case 2 of (Ex. 8.12).

(d) Thus we have shown that the family C0 of (Ex. 13.2) is contained in the inter-
section of the closures of two families C1 and C2 of ACM curves, which are open
subsets of irreducible components of the Hilbert scheme, each of dimension 72.
In particular, the curves in the family C0 all correspond to singular points of the
Hilbert scheme.

(e) Show that the Hilbert scheme just described, though singular, is reduced along
C0. Hint: Use (Ex. 12.1).

13.4. Sernesi’s example, continued some more.

(a) Use the fact that the Hilbert scheme of (6, 3) curves is nonsingular at the points
corresponding to curves D0 on quadric surfaces (Ex. 6.4) and the liaisons of
(Ex. 13.3b) to show that the closure of the component C1 mentioned there is still
nonsingular at the special points C0, at least when C0 is nonsingular and con-
tained in a nonsingular quartic surface X0. This closure corresponds to (18, 39)
curves with the added condition h0(IC(4)) �= 0.
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(b) Make a similar argument to show that the closure of the family C2 in (Ex. 13.3c)
is nonsingular. These correspond to (18, 39) curves with the extra condition
h1(OC(4)) �= 0.

(c) Thus the Hilbert scheme at a point corresponding to a general curve of the
family C0 is reduced, and has two irreducible components, both nonsingular of
dimension 72, meeting in a subset of codimension 1. One can still ask, how do
these two components meet? I don’t know the answer to that.



3

Formal Moduli

In the previous two chapters we have studied infinitesimal deformations of
scheme and sheaves in preparation for the study of global moduli questions.
The ideal or gold standard for a moduli space is the model represented by the
Hilbert scheme (1.1): there is a scheme whose points parametrize the objects
in question, there is a universal family over this scheme, and any other family
is obtained by a unique base extension from the universal family. In general,
moduli problems do not have such a nice answer, and even if they do, the
existence may be quite subtle.

In this chapter we deal with a situation intermediate between infinitesi-
mal and global, namely the study of formal moduli, a situation that is usually
more tractable than the difficult global questions. The object is to gather
together all possible infinitesimal deformations into one structure, a “formal
moduli space,” so that any given infinitesimal deformation is obtained, hope-
fully uniquely, from this formal space. The precise formulation of this concept
will be explained in Section 15.

We start with the case of plane curve singularities (Section 14), where we
can compute by hand, to illustrate the kind of result we may hope to achieve in
general. Then we formulate the general problem in terms of functors of Artin
rings (Section 15), and give Schlessinger’s criterion for pro-representability
(Section 16), which is the principal technical result of this chapter. In the
following sections, Sections 17, 18, 19, we apply this theory to each of our
Situations A, B, C, D, and give examples and applications. In Section 20
we compare embedded and abstract deformations of projective varieties and
prove a theorem of Noether that a general surface in P

3
C

of degree ≥ 4 contains
only complete intersection curves. In Section 21 we discuss the problem of
algebraization, that is, passage from a formal moduli space to a more global
object. As an application (Section 22), we study the question of lifting varieties
from characteristic p to characteristic 0.

R. Hartshorne, Deformation Theory, Graduate Texts in Mathematics 257, 99
DOI 10.1007/978-1-4419-1596-2 4, c© Robin Hartshorne 2010



100 3 Formal Moduli

14. Plane Curve Singularities

For plane curve singularities, one can ask questions similar to the ones we have
been asking for global objects. Can one describe the set of possible singularities
up to isomorphism, and can one find moduli spaces parametrizing them?

First we have to decide what we mean by isomorphism. We do not mean
equal as subschemes of the plane (that question is answered by the Hilbert
scheme) because it is the type of the singularity, not its embedding, that we
are after. Nor do we mean isomorphism of a neighborhood of the point on the
curve in the Zariski topology, because that already determines the birational
equivalence class of the global curve. We want a purely local notion, and for
the moment analytic isomorphism seems to be a reasonable choice. This means
we ask for isomorphism of the completion of the local rings of the points on
the curves (Ex. 14.1).

Right away we see that we cannot expect to have a moduli space of all
curve singularities, because of jump phenomena, i.e., families where all fibers
except one are isomorphic to each other. The family xy− t = 0 is nonsingular
for all t �= 0 but gives a node for t = 0. The family y2 − tx2 − x3 = 0 gives a
node for all t �= 0 but a cusp for t = 0. Since all smooth points are analytically
isomorphic, and all nodes are analytically isomorphic, there cannot be a coarse
moduli space. This is because there would have to be a morphism from the
t-line to the coarse moduli space M , sending all points t �= 0 to one point of
M , while t = 0 goes to a different point of M , and this is impossible.

One can improve the situation by considering only “equisingular” families,
meaning families with roughly the same type of singularity. Then, for exam-
ple, the analytic isomorphism types of ordinary fourfold points can be distin-
guished by a cross-ratio, leading to a moduli space similar to the j-invariant
of an elliptic curve (Ex. 14.2). Equisingular deformations have been studied
by Wahl [172]. See also [42].

For the moment, instead of looking for a moduli space of singularities,
we will focus our attention on a single singularity, and attempt to describe
all possible local deformations of this singularity. Our goal is to find a defor-
mation over a suitable local parameter space that is “complete” in the sense
that any other local deformation can be obtained (up to isomorphism) by
base extension from this one, and that is “minimal” in the sense that it is
the smallest possible. The completeness is expressed by saying it is a versal
deformation space for the singularity, and if it is minimal, we call it miniversal.
(The precise definition of these notions will come in §15 when we interpret
the problem in terms of functors of Artin rings.) One could also ask for a
family that is universal in the sense that any other family is obtained by a
unique base extension from this one, but as we shall see, this rarely exists
(14.0.4).

It turns out that our goal of finding such a versal or miniversal deformation
of a given singularity can be accomplished only for strictly local deformations.
This means over parameter spaces that are artinian or complete local rings.
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(There is also a complex-analytic version using convergent power series over
C [42], which we do not discuss in this book, and then there are algebraization
theorems in certain circumstances allowing one to extend the formal family
to an algebraic family; see §21).

So in this section, before introducing the general theory of formal defor-
mations, we will construct explicitly some deformation spaces of plane curve
singularities and prove directly their versal property. This will serve as an
introduction to the general theory and will illustrate some of the issues we
must deal with in studying local deformations.

Example 14.0.1. We start with a node, represented by the equation xy = 0
in the plane A

2 = Spec k[x, y]. We consider the family X given by xy − t = 0
in A

3 = Spec k[x, y, t], together with its map to the parameter space T =
Spec k[t]. For t �= 0 the fiber is a nonsingular hyperbola. For t = 0 we recover
the original nodal singularity.

We will show that this familyX/T has a versal property, at least in a formal
sense. Let X ′/S be any flat deformation of the node over the spectrum S of a
complete local ring. We will assume for simplicity that S = Spec k[[s]], since
the case of more variables or the quotient of a complete regular local ring can
be handled similarly. We will also assume for this example that X ′ is defined
by a single equation g(x, y, s) = 0 in the ring k[[s]][x, y] with g(x, y, 0) = xy,
though this property might not hold for an arbitrary X ′/S.

We would like to show that there exists a morphism S → T , i.e., a homo-
morphism k[t]

ϕ→ k[[s]] given by a power series ϕ(t) = T (s) with T (0) = 0,
such that the base extension of the family X becomes isomorphic to the family
X ′. To do this, it will be sufficient to find functions X(x, y, s) and Y (x, y, s)
reducing to x and y for s = 0, and a unit U(x, y, s) reducing to 1 for s = 0,
such that

U(XY − T ) = g(x, y, s). (*)

We will construct T,X, Y, U as power series in s degree by degree. The
constant terms (for s = 0) have already been prescribed: T (0) = 0, X(0) = x,
Y (0) = y, U(0) = 1, and so the equation (∗) is satisfied for s = 0.

Let us write

T =
∑

i≥1

ais
i,

X = x+
∑

i≥1

bis
i,

Y = y +
∑

i≥1

cis
i,

U = 1 +
∑

i≥1

uis
i,

g = xy +
∑

i≥1

gis
i,
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where ai ∈ k and bi, ci, ui, gi ∈ k[x, y]. Substituting and looking at the degree-
1 part of the equation (∗) (the coefficient of s), we obtain

xc1 + yb1 − a1 + xyu1 = g1.

Now g1 is a given polynomial in x, y. Any polynomial can be expressed as a
constant term −a1 plus polynomial multiples of x, y, and xy. Thus we can find
a1, b1, c1, u1 to make this equation hold, and then the equation (∗) is valid for
the coefficients of s.

Note that in making these choices, a1 is uniquely determined, but there is
considerable flexibility in choosing polynomials b1, c1, u1.

We proceed inductively. Suppose that ai, bi, ci, ui have been chosen for all
i < n so that (∗) is satisfied for all coefficients of si with i < n. We write out
the coefficient of sn and obtain

h(x, y) + xcn + ybn − an + xyun = gn,

where h(x, y) is a polynomial consisting of all the cross products involving
ai, bi, etc., with i < n, which are already determined. Then as before we can
find an, bn, cn, un to satisfy this equation, and it follows that T,X, Y, U will
satisfy (∗) up through the coefficient of sn.

Proceeding in this manner, we find functions T,X, Y, U that are power
series in s, with coefficients that are polynomials in x, y, i.e., elements of the
ring k[x, y][[s]], that make the equation (∗) hold.

This is not quite what we were hoping for, since the ring k[x, y][[s]] is bigger
than k[[s]][x, y]. So we have not found an isomorphism of X ′ with X ×T S,
but only an isomorphism of their formal completions [57, II, §9] along the
closed fiber at s = 0. Thus the versality property is true only in this formal
sense. In other words, we have shown that the family X/T has the following
property: given a flat deformation X ′/S as above of the node over a complete
local ring S, there exists a morphism S → T such that the base extension
X ×T S and X ′ have isomorphic formal completions along the fiber over the
closed point of S.

Remark 14.0.2. While we wrote this example using polynomials in x and y,
everything works just as well using power series in x and y, and in that case
we obtain an analogous versal deformation property.

Remark 14.0.3. We saw in the calculation above that the linear coefficient
a1 of T was uniquely determined. Thus the morphism S → T induces a unique
map on Zariski tangent spaces, and this implies that T is as small as possible,
i.e., it is a miniversal deformation space for the node.

Remark 14.0.4. On the other hand, the higher coefficients of T are not
uniquely determined. For example, let u ∈ k[[s]] be a unit with constant
term 1, and let u−1 be its inverse. Since

u−1((xu)y − su) = xy − s,
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we get an isomorphism of X with itself by taking U = u−1, X = xu, Y = y,
T = su. If we set u = 1− s, u−1 = 1 + s+ s2 + · · · , this gives T = s− s2, so
the coefficient a2 is −1, while for the trivial isomorphism, a2 = 0. This shows
that the morphism S → T is not unique, even at the power series level, and
so the deformation is not universal.

Remark 14.0.5. Note also that in the above proof we could take un = 0 for
all n ≥ 1. So why include U? We include U here, because in the generaliza-
tion (14.1) below it becomes necessary when the equation f(x, y) = 0 is not
homogeneous.

We will now generalize the above argument to an arbitrary isolated plane
curve singularity, given by an equation f(x, y) = 0. This may be either a
polynomial or a power series. We assume that it has an isolated singularity
at the origin, so that the ideal J = (f, fx, fy), where fx, fy are the partial
derivatives, will be primary for the maximal ideal m = (x, y).

To guess the versal deformation space of this singularity, we take a hint
from the calculation of the T 1-functor, which parametrizes deformations over
the dual numbers (5.2). Let R = k[x, y] and B = R/(f). Recall (Ex. 3.2) that
T 1(B/k,B) is just B/(fx, fy) = R/J .

Take polynomials g1, . . . , gr ∈ R whose images in R/J form a vector space
basis. Then we take r new variables t1, . . . , tr and define a deformation X over
T = Spec k[t1, . . . , tr] by

F (x, y, t) = f(x, y) +
r∑

i=1

tigi(x, y) = 0.

Theorem 14.1. Given an isolated plane curve singularity f(x, y) = 0, the
deformation X/T defined above is miniversal in the following sense:

(a) For any other deformation X ′/S, with S the spectrum of a complete local
ring, there is a morphism ϕ : S → T such that X ′ and X ×T S become
isomorphic after completing along the closed fiber over zero, and

(b) although ϕ may not be unique, the induced map on Zariski tangent spaces
of S and T is uniquely determined.

Proof. The proof is a generalization of the one given in (14.0.1) above, once
we make clear the role of the partial derivatives and of the basis gi of R/J .

First of all, let S = SpecC, where C is a complete local ring. Since any
infinitesimal deformation of a complete intersection is a complete intersection
(9.2), the fiberX ′

n over any artinian quotient Cn of C is a complete intersection
in A

2
Cn

, defined by a single equation. Taking the inverse limit over n, we find
a single function G(x, y, s) in C[x, y]∧, the mC-adic completion, that defines
the completion of X ′ along the closed fiber. (This is a little weaker than the
assumption we made in (14.0.1), but sufficient for our proof.) Second, writing
C as a quotient of a formal power series k[[s1, . . . , sm]], we can lift the equation
G to the power series ring. It will thus be sufficient to prove the theorem for
the case C = k[[s1, . . . , sm]].
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To establish the isomorphism required in (a) we will find power series Ti,
i = 1, . . . , r, with Ti(0) = 0 in C and X,Y,U in k[x, y][[s1, . . . , sm]] restricting
to x, y, 1 respectively for si = 0, such that

UF (X,Y, T ) = G(x, y, s), (*)

where T stands for T1, . . . , Tr. We will construct T,X, Y, U step by step as
before.

Suppose inductively that we have constructed partial power series T (ν),
X(ν), Y (ν), U (ν) so that the equation (∗) holds modulo sν+1. (Here we will
abbreviate s1, . . . , sn to simply s, leaving the reader to supply missing indices
as needed—so for example sν+1 means the ideal (s1, . . . , sn)ν+1.) This has
just been done for ν = 0.

We define a new function

H(ν) = U (ν)F (X(ν), Y (ν), T (ν))−G(x, y, s).

By construction this function lies in the ideal (sν+1). Thus H(ν) mod(sν+2) is
homogeneous in s of degree ν + 1, so we can write

H(ν) ≡ f(x, y)ΔU + fxΔX + fyΔY +
r∑

i=1

giΔTi (mod sν+2),

where the ΔTi are polynomials in s, and ΔU,ΔX,ΔY are polynomials in
x, y, s, all of these being homogeneous of degree ν + 1 in s. This is possible,
because the coefficient of each monomial in s in Hν is a polynomial in x, y,
which can be expressed as a combination of linear multiples of the gi and
polynomial multiples of f, fx, fy, since the gi form a basis for R/J .

Now we define

T
(ν+1)
i = T

(ν)
i −ΔTi,

X(ν+1) = X(ν) −ΔX,

Y (ν+1) = Y (ν) −ΔY,

U (ν+1) = U (ν) −ΔU,

and I claim that these new functions will satisfy the equation (∗) mod sν+2.

This is a consequence of the following lemma.

Lemma 14.2. Let F (x1, . . . , xn) be a polynomial or power series. Let
h1, . . . , hn be new variables. Then

F (x1+h1, . . . , xn +hn) ≡ F (x1, . . . , xn)+
n∑

i=1

hi
∂F

∂xi
(x1, . . . , xn) (mod(h)2).
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The proof of the lemma is elementary, and we leave to the reader the simple
verification of the claim made above, applying the lemma to the function
UF (X,Y, T1, . . . , Tr).

Thus we have constructed power series T ∈ S and X,Y,U in
k[x, y][[s1, . . . , sm]] making the required isomorphism. It is clear from the
proof, as in (14.0.1) before, that the linear parts of the functions T1, . . . , Tr

are uniquely determined, and so the map S → T is unique on the Zariski
tangent spaces.

Remark 14.2.1. Exactly the same proof works for an isolated hypersurface
singularity in any dimension. So if f(x1, . . . , xn) = 0 in A

n has an isolated
singularity at the origin, then the ideal J = (f, fx1 , . . . , fxn

) will be pri-
mary for the maximal ideal m = (x1, . . . , xn). We take polynomials gi to
form a k-basis of R/J , and then the versal deformation space is defined by
F (x1, . . . , xn, t1, . . . , tr) = f −Σtigi = 0.

Example 14.2.2. Let us study the cusp defined by f(x, y) = y2 − x3. The
partial derivatives are 2y and 3x2, so (assuming char k �= 2, 3) we can take
1, x as a basis for R/J , and the versal deformation is defined by F (x, y, t, u) =
y2 − x3 + t+ ux = 0. Here the parameter space is two-dimensional, given by
t, u. For general values of t, u, the nearby curve will be nonsingular, but for
special nonzero values of t, u it may be singular. Indeed, if we set F , Fx, and Fy

equal to zero, we find a singular point at t = −2x3, u = 3x2. Hence there are
singularities in the fiber over points on the discriminant locus 27t2− 4u3 = 0.
It is easy to check that this singularity is a node when t, u �= 0. So the general
deformation is nonsingular, but some nearby deformations have nodes.

References for this section. My notes of lectures by Mike Schlessinger
ca. 1972 (unpublished). See also Zariski [176], who discusses in detail the
problem of constructing a moduli space of analytic isomorphism classes of
plane curve singularities that have the same topological type. For a detailed
study of deformations of plane curve singularities in the complex analytic case,
see [42].

Exercises.

14.1. Analytic isomorphism. Two plane curves X,X ′, defined by polynomi-
als f(x, y) = 0 and f ′(x, y) = 0, having isolated singularities at the origin, are
analytically isomorphic (at the origin) if the complete local rings k[[x, y]]/(f) and
k[[x, y]]/(f ′) are isomorphic [57, I, Ex. 5.14]. Let T 1 = T 1

X/k, and let τ = lengthT 1.

(a) If X,X ′ are analytically isomorphic, then τ = τ ′.
(b) The converse is true for small values of τ . Show (assuming char. k = 0 if neces-

sary) that:
(1) If τ = 1, then X is analytically isomorphic to the singularity xy = 0. These

are nodes.
(2) If τ = 2, then X is analytically isomorphic to y2 − x3 = 0. These are cusps.
(3) If τ = 3, then X is analytically isomorphic to y2−x4 = 0. These are tacnodes.
(4) If τ = 4, then X is analytically isomorphic to one of the following: (i) y2 −

x5 = 0, a higher-order cusp, or (ii) xy(y − x) = 0, an ordinary triple point.
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14.2. Ordinary fourfold points.

(a) A multiple point of a plane curve of multiplicity four (i.e., f ∈ (x, y)4\(x, y)5)
with four distinct tangent directions (i.e., four distinct factors of f mod(x, y)5),
is analytically isomorphic to a curve defined by xy(y − x)(y − λx) = 0 for some
λ �= 0, 1. Show that two of these are analytically isomorphic if and only if they
have the same j-invariant (defined as in the case of an elliptic curve [57, IV,
§4]).

(b) The ordinary fourfold point has τ = 9. Can you show that for each τ = 5, 6, 7, 8,
there are only finitely many analytic isomorphism classes of singularities, and
describe them?

14.3. Ordinary fivefold points. Here we discuss plane curve singularities of
multiplicity 5 with five distinct tangent vectors. Show that any such is analytically
isomorphic to one of the two following types:

(i) the “straight”ones: f = xy(y−x)(y−λx)(y−μx), where 0, 1, λ, μ are all distinct.
(ii) the “curly” ones: f + g, with f as above, and g a sufficiently general form of

degree 6. In this case the analytic isomorphism class depends only on λ, μ, and
not on g, as long as g is not in the ideal generated by fx and fy.

In either type (i) or (ii) two such are isomorphic if λ, μ are changed according to a
certain finite group, corresponding to reordering (0, 1, λ, μ,∞) and renormalizing by
a fractional linear transformation. If g goes to zero, type (ii) specializes to type (i).
So if there is a “moduli space,” it consists of two copies of a 2-dimensional variety,
with each point of the second copy specializing to the corresponding point of the
first copy. Thus it cannot be represented by a scheme, or even an algebraic space.
Note that τ = 16 for type (i) and τ = 15 for type (ii), and yet the deformations of
any of these would be equisingular by anyone’s definition.

14.4. τττ is semicontinuous.

(a) Let X/S be a flat family of affine locally complete intersection schemes, with S
a nonsingular curve. Show that for any point s ∈ S, T 1

Xs/k
∼= T 1

X/S ⊗S k(s).
(b) Now suppose the fibers of X/S are plane curves with isolated singularities at the

origin. Show that the function τ(Xs) = length(T 1
Xs/k

) is upper semicontinuous
on S.

(c) Conclude for example that ifX0 has a tacnode for 0 ∈ S, then there is a nonempty
Zariski open subset of S \{0} where all the Xs have analytically isomorphic sin-
gularities, and they are either all smooth, all nodes, all cusps, or all tacnodes.

15. Functors of Artin Rings

In this section we will formalize the idea of studying local deformations of
a fixed object. We introduce the notion of pro-representable functors and of
versal deformation spaces, and in the next section we will prove the theorem
of Schlessinger giving a criterion for the existence of a versal deformation
space. This will give us a systematic way of dealing with questions of local
deformations. Although it may seem rather technical at first, the formal local
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study is important because it gives necessary conditions for existence of global
moduli, and is often easier to deal with than the global questions. Also it gives
useful local information when there is no global moduli space at all.

The typical situation is to start with a fixed object X0, which could be
a projective scheme or an affine scheme with a singular point, or any other
structure, and we wish to understand all possible deformations of X0 over
local Artin rings. We can consider the functor that to each local Artin ring
associates the set of deformations (up to equivalence) of X0 over that ring,
and to each homomorphism of Artin rings associates the deformation defined
by base extension. In this way we get a (covariant) functor from Artin rings
to sets.

Now we describe the general situation that we will consider, which includes
as a special case the deformations of a fixed object as above.

Let k be a fixed algebraically closed ground field, and let C be the cate-
gory of local artinian k-algebras with residue field k. We consider a covariant
functor F from C to (Sets). These hypotheses can be weakened (15.2.6), but
we shall stick to this case for simplicity.

One example of such a functor is obtained as follows. Let R be a complete
local k-algebra, and for each A ∈ C, let hR(A) be the set of k-algebra homo-
morphisms Hom(R,A). For any morphism A → B in C we get a map of sets
hR(A)→ hR(B), so hR is a covariant functor from C to (Sets).

Definition. A covariant functor F : C → (sets) that is isomorphic to a functor
of the form hR for some complete local k-algebra R is called pro-representable.

To explain the nature of an isomorphism between hR and F , let us consider
more generally any homomorphism of functors ϕ : hR → F for a complete
local k-algebra R with maximal ideal m. In particular, for each n this will give
a map ϕn : Hom(R,R/mn)→ F (R/mn), and the image of the quotient map of
R to R/mn gives an element ξn ∈ F (R/mn). These elements ξn are compatible,
in the sense that the natural map R/mn+1 → R/mn induces a map of sets
F (R/mn+1) → F (R/mn) that sends ξn+1 to ξn. Thus the collection {ξn}
defines an element ξ ∈ lim←− F (R/mn). We will call such a collection ξ = {ξn}
a formal family of F over the ring R.

Here it is useful to introduce the category Ĉ of complete local k-algebras
with residue field k. The category Ĉ contains the category C, and we can
extend any functor F on C to a functor F̂ from Ĉ to sets by defining F̂ (R) =
lim←− F (R/mn) for any R ∈ Ĉ. In this notation, F̂ (R) is the set of formal families
of F over R.

Conversely, a formal family ξ = {ξn} of F̂ (R) defines a homomorphism
of functors ϕ : hR → F as follows. For any A ∈ C and any homomorphism
f : R → A, since A is artinian, it factors through R/mn for some n, say
f = gπ, where π : R → R/mn and g : R/mn → A. Then let ϕ(f) be the
image of ξn under the map F (g) : F (R/mn)→ F (A). It is easy to check that
these constructions are well-defined and inverse to each other, so we have the
following:
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Proposition 15.1. If F is a functor from C to (Sets) and R is a complete local
k-algebra with residue field k, then there is a natural bijection between the set
F̂ (R) of formal families {ξn | ξn ∈ F (R/mn)} and the set of homomorphisms
of functors hR to F .

Thus, if F is pro-representable, there is an isomorphism ξ : hR → F for
some R, and we can think of ξ as an element of F̂ (R). We say that the pair
(R, ξ) pro-represents the functor F . One can verify easily that if F is pro-
representable, the pair (R, ξ) is unique up to unique isomorphism (Ex. 15.1).

In many cases of interest, the functors we consider will not be pro-
representable, so we define the weaker notions of having a versal family or
a miniversal family.

Definition. Let F : C → (Sets) be a functor. A pair (R, ξ) with R ∈ Ĉ and
ξ ∈ F̂ (R) is a versal family for F if the associated map hR → F is strongly
surjective. Here we say that a morphism of functors G→ F is strongly surjec-
tive if for every A ∈ C, the map G(A)→ F (A) is surjective, and furthermore,
for every surjection B → A in C, the map G(B) → G(A) ×F (A) F (B) is
also surjective. In our case this means that given a map R → A inducing an
element η ∈ F (A), and given θ ∈ F (B) mapping to η, one can lift the map
R → A to a map R → B inducing θ. (Note: Some authors call this property
of a morphism of functors G → F smooth, by analogy with the infinitesimal
lifting property of smooth morphisms of schemes (Ex. 15.4).)

If in addition the map hR(D) → F (D) is bijective, where D = k[t]/t2 is
the ring of dual numbers, we say that (R, ξ) is a miniversal family, or that the
functor has a pro-representable hull (R, ξ). We say that (R, ξ) is a universal
family if it pro-represents the functor F . The following proposition explains
the significance of this terminology.

Proposition 15.2. Let (R, ξ) be a formal family of the functor F .

(a) If (R, ξ) is a versal family, then for any other formal family (S, η), there is
a ring homomorphism f : R→ S such that the induced map F̂ (R)→ F̂ (S)
sends ξ to η.

(b) If (R, ξ) is miniversal, then for any (S, η) the map f : R → S of (a)
induces a unique homomorphism R/m2

R → S/m2
S.

(c) If (R, ξ) is a universal family, then for any (S, η) as in (a), the correspond-
ing map f : R→ S is unique.

Proof. (a) Let (R, ξ) be a versal family, and let (S, η) be any formal family.
Then by definition we have a strongly surjective morphism of functors ϕ :
hR → F , determined by ξ. For each n, we have an element ηn ∈ F (S/mn

S).
Since ϕ is surjective, we can lift it to an element θn ∈ hR(S/mn

S), i.e., a
homomorphism θn : R → S/mn

S such that the induced map F (R/mn
R) →

F (S/mn
S) sends ξn to ηn. Furthermore, because of the strong surjectivity of

ϕ, starting from θ1, we can lift successively and obtain a compatible family
{θn}, that is, so that each θn is obtained by θn+1 followed by the natural
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map S/mn+1
S → S/mn

S . Thus the maps θn determine a homomorphism R →
lim←−S/m

n
S , which is equal to S, since S is a complete local ring. This map f :

R→ S then induces the map F̂ (R)→ F̂ (S) that sends ξ to η by construction.
(b) If (R, ξ) is miniversal, to show that the induced map f̄ : R/m2

R → S/m2
S

is unique, it is sufficient to show that for every map S/m2
S → D = k[t]/t2, the

induced map R/m2
R → D is unique. But since hR(D)→ F (D) is bijective, by

definition, this follows immediately.
(c) If (R, ξ) is a universal family, then hR → F is an isomorphism, so η

determines a unique map hS → hR, and hence a unique f : R→ S.

Example 15.2.1. Suppose that F is a globally defined contravariant functor
from (Sch /k) to (Sets). For example, think of the functor Hilb, which to each
scheme S/k associates the set of closed subschemes of P

n
S , flat over S. Given

a particular element X0 ∈ F(k), we can define a local functor F : C → (Sets)
by taking, for each A ∈ C, the subset F (A) = F(SpecA) consisting of those
elements X ∈ F(SpecA) that reduce to X0 ∈ F(k).

If the global functor F is representable, then the local functor F will be
pro-representable (23.3). Thus pro-representability of the local functor is a
necessary condition for representability of the global functor.

Example 15.2.2. The converse of (15.2.1) is false: the local functor may be
pro-representable when the global functor is not representable. Take for exam-
ple deformations of P

1. It is easy to see that this functor is not representable
(25.2.1). But since all local deformations over Artin rings are trivial (5.3.1),
(Ex. 10.3), the local functor is pro-represented by the ring k.

Example 15.2.3. It follows from (14.1) that the functor of local deformations
of a plane curve singularity has a miniversal deformation space (Ex. 15.2).
On the other hand, the functor is not pro-representable in general (14.0.4).

Example 15.2.4. For an example of a functor with no versal family, we note
that if (R, ξ) is a versal family for the functor F , then the map Hom(R,D)→
F (D) is surjective, so F (D) is a quotient of a finite-dimensional vector space.
If F is the functor of deformations of a k-algebraB, then F (D) is given by T 1

B/k

(5.2). If T 1
B/k is not finite-dimensional, F cannot have a versal deformation

space. For example, let B = k[x, y, z]/(xy). Then T 1
B/k = k[z]. The trouble is

that B does not have isolated singularities.

Example 15.2.5. For an example of a functor with a versal family but no
miniversal family, see (18.4.1) or (18.4.2).

Remark 15.2.6. There is considerable variation in the literature concerning
the exact hypotheses and terminology in setting up this theory. One need
not assume k algebraically closed, for example, and then there is a choice
whether to stick with local k-algebras having residue field k or to allow finite
field extensions. Also, one need not restrict to k-algebras. Sometimes it is
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convenient (e.g., for mixed characteristic cases; cf. §22) to take Artin algebras
over a fixed ring such as the Witt vectors. Some people use “versal” to mean
what we called “miniversal.” Some call the latter “semi-universal.” Some do
not say universal but say only “weakly universal” for what we called universal,
thinking more generally of the stack instead of the functor.

Reference for this section. Pro-representable functors were introduced by
Grothendieck [45, exposé 195].

Exercises.

15.1. Verify that if the pair (R, ξ) pro-represents the functor F , then (R, ξ) is
unique up to unique isomorphism. Show also that a miniversal family is unique up
to isomorphism, but the isomorphism may not be unique.

15.2. Use (14.1) to verify that the ring R = k[[t1, . . . , tr]] and the formal family
obtained by completing the family X/T given there form a miniversal family for the
functor of deformations of the plane curve singularity over Artin rings.

15.3. Give an example to show that not every covariant functor G : Ĉ → (Sets) is
of the form F̂ for some functor F : C → (Sets).

15.4. Let f : X → Y be a flat morphism of schemes of finite type over k, let
x ∈ X be a closed point, and let y = f(x). For any Artin ring A ∈ C, let G(A) be
the set of morphisms of SpecA to X sending the closed point to x, and let F (A) be
morphisms of SpecA to Y landing at y. Then G and F are covariant functors from
C to (Sets), and composing with f gives a morphism of functors f∗ : G → F . Show
that f is smooth at the point x if and only if the morphism of functors G → F is
strongly surjective.

15.5. We define an obstruction theory for a functor F : C → (Sets) to be a vector
space V/k, together with, for every exact sequence 0 → J → C′ → C → 0 as in
(6.1), and for every u ∈ F (C), an element ϕ(u,C′) ∈ V ⊗ J such that

(1) ϕ(u,C′) = 0 if and only if u is the image of some u′ ∈ F (C′), and
(2) formation of ϕ(u,C′) is functorial when we divide J by a subspace K, as in

the definition of an obstruction theory for a local ring (§11).

(a) If F has a versal family (R, ξ), show that V acts as an obstruction theory for
the local ring R also.

(b) In particular, if (R, ξ) is a miniversal family, then dimR ≥ dim tF−dimV , where
tF = F (D) is the tangent space to F .

(c) Show that the following functors have obstruction theories:
(1) Deformations of a locally complete intersection subscheme of P

n.
(2) Deformations of a line bundle on a projective variety.
(3) Deformations of a locally free sheaf on a projective variety.
(4) Deformations of an affine scheme over k.
(5) Deformations of a nonsingular projective scheme over k.

15.6. We say that the functor F : C → (Sets) is unobstructed if for every surjective
map of Artin rings A′ → A, the induced map F (A′) → F (A) is surjective.
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(a) If F has an obstruction theory in a vector space V , and if V = 0, then F is
unobstructed.

(b) Let F be a functor with a versal family (R, ξ). Show that F is unobstructed if
and only if R is a regular local ring.

15.7. Let F → G be a strongly surjective morphism of functors, let hS → F be a
versal family for F , and let hR → G be a miniversal family for G.

(a) Show that there is a strongly surjective morphism of functors hS → hR compat-
ible with the map F → G.

(b) Show that S is isomorphic to a ring R[[t1, . . . , tr]] of formal power series over R.
Hint: Imitate the proof of (4.6).

15.8. Let F → G be a morphism of functors of Artin rings. Assume that F and G
each have a miniversal family, that F is unobstructed, and that the map on tangent
spaces tF → tG is surjective. Then show that the morphism F → G is strongly
surjective and that G is unobstructed.

16. Schlessinger’s Criterion

In this section we will prove Schlessinger’s theorem [145], which gives criteria
for a functor of Artin rings to have a versal family, a miniversal family, or to
be pro-representable.

We keep the notation of the previous section: k is a fixed algebraically
closed field, C is the category of local artinian k-algebras, and F is a covariant
functor from C to (Sets). Note that the category C has fibered direct products.
If A′ → A and A′′ → A are morphisms in C, we take A′ ×A A′′ to be the set-
theoretic fibered product {(a′, a′′) | a′ and a′′ have the same image in A}. The
ring operations extend naturally, giving another object of C, and this object
is also the categorical fibered direct product in C.

It is convenient to introduce the notation tF for F (D), where D is the ring
of dual numbers. We call this the tangent space of F . Similarly tR denotes the
tangent space of the functor hR, which is just Homk(R,D), and is equal to
the dual vector space of mR/m

2
R.

A small extension in C is a surjective map A′ → A whose kernel I is a
one-dimensional k-vector space.

We begin with some necessary conditions.

Proposition 16.1. If F has a versal family, then:

(a) F (k) has just one element.
(b)For any morphisms A′ → A and A′′ → A in C, the natural map

F (A′ ×A A′′)→ F (A′)×F (A) F (A′′)

is surjective.
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If furthermore F has a miniversal family, then:

(c) For any A ∈ C, considering the maps A → k and D → k, the map of (b)
above,

F (A×k D)→ F (A)×F (k) F (D),

is bijective.
(d)F (D) = tF has a natural structure of a finite-dimensional k-vector space.
(e) For any small extension p : A′ → A and any element η ∈ F (A), there is a

transitive group action of the vector space tF on the set p−1(η) (provided
it is nonempty).

Finally, if F is pro-representable, then:

(f) The maps of (b) are all bijective and the action of (e) is bijective whenever
p−1(η) is nonempty.

Proof. (a) Since Hom(R, k) → F (k) is surjective, and Hom(R, k) has just
one element, so does F (k).

(b) Given elements η′ ∈ F (A′) and η′′ ∈ F (A′′) mapping to the same
element η ∈ F (A), by the strong surjective property of a versal family, there
are compatible homomorphisms ofR to A′, A, and A′′ inducing these elements.
Then there is a unique map of R to the product A′×A A

′′ inducing the given
maps of R to A′ and A′′. This in turn defines an element of F (A′ ×A A′′)
that restricts to η′ and η′′ as required. Note that although the map of R to
A′×AA

′′ is uniquely determined by the maps of R to A′ and A′′, these latter
may not be uniquely determined by η′ and η′′, and so the resulting element
in F (A′ ×A A′′) may not be uniquely determined.

(c) Suppose we are given η ∈ F (A) and ξ ∈ F (D). We know from (b) that
there are elements of F (A ×k D) lying over the pair (η, ξ). Suppose θ1 and
θ2 are two such. Choose a homomorphism u : R → A inducing η. Since
A×k D = A[t]/t2 → A is surjective, we can lift u to v1 and v2 : R→ A[t]/t2,
inducing θ1 and θ2. Since θ1 and θ2 both lie over ξ, the projections of v1
and v2 to D both induce ξ. By the hypothesis of miniversality, tR → tF is
bijective, so these restrictions are equal. Since v1 and v2 also induce the same
map u : R→ A, we obtain v1 = v2 and hence θ1 = θ2.

(d) By miniversality, tR → tF is bijective, so we can just carry over the
vector space structure on tR to tF . But this structure can also be recovered
intrinsically, using only the functorial properties of F and condition (c) above
(Ex. 16.1).

(e) Let A′ → A be a small extension with kernel I ∼= k. Note that A′ ×A

A′ ∼= A′×k k[I] by sending (x, y) �→ (x, x0 +y−x), where x0 ∈ k is the residue
of xmod m. Consider the surjective map

F (A′ ×A A′)→ F (A′)×F (A) F (A′)

of (b). Using the isomorphism above and condition (c), we can reinterpret the
left-hand side as F (A′ ×k k[I]) ∼= F (A′)× tF , and we get a surjective map
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F (A′)× tF → F (A′)×F (A) F (A′)

that is an isomorphism on the first factor. If we take η ∈ F (A) and fix η′ ∈
p−1(η) then we get a surjective map

{η′} × tF → {η′} × p−1(η),

and this gives a transitive group action of tF on p−1(η).
(f) If F is pro-representable the proof of (b) shows that these maps are all

bijective. It follows that the action of (e) is also bijective.

Theorem 16.2 (Schlessinger’s criterion). The functor F : C → (Sets) has
a miniversal family if and only if:

(H0) F (k) has just one element.
(H1) F (A′×A A

′′)→ F (A′)×F (A) F (A′′) is surjective for every small exten-
sion A′′ → A.

(H2) The map of H1 is bijective when A′′ = D and A = k.
(H3) tF is a finite-dimensional k-vector space.

Furthermore, F is pro-representable if and only if in addition:

(H4) For every small extension p : A′′ → A and every η ∈ F (A) for which
p−1(η) is nonempty, the group action of tF on p−1(η) is bijective.

Proof. The necessity of conditions (Hi) has been seen in (16.1).
So now let F be a functor satisfying conditions H0,H1,H2,H3. First we

will construct a ring R and a morphism hR → F . Then we will show that it
has the versal family property.

We will define R and the map hR → F as an inverse limit of rings Rq

and elements ξq ∈ F (Rq) that we construct inductively for q ≥ 0. We take
R0 = k. Note that the vector space structure on tF is already determined by
conditions H0,H1,H2, (Ex. 16.1), so that it makes sense to say in H3 that it
is finite-dimensional. Let t1, . . . , tr be a basis of the dual vector space t∗F , let
S be the formal power series ring k[[t1, . . . , tr]], with maximal ideal m, and
take R1 = S/m2. Then tR1

∼= tF by construction. Furthermore, by iterating
the condition H2, we obtain F (R1) = F (k[t1] × · · · × k[tr]) ∼= tF ⊗k t

∗
F . The

natural element here gives ξ1 ∈ F (R1), inducing the isomorphism tR1
∼= tF .

Now suppose we have constructed a compatible sequence (Ri, ξi) for i =
1, . . . , q, with ξi ∈ F (Ri), where Ri = S/Ji, and mi+1 ⊆ Ji ⊆ Ji−1, and
for each i the natural map Ri → Ri−1 sends ξi to ξi−1. Then, to construct
Rq+1, we look at ideals J in S, with mJq ⊆ J ⊆ Jq, and take Jq+1 to be the
minimal such ideal J with the property that ξq ∈ F (Rq) lifts to an element
ξ′ ∈ F (S/J). To show that there is a minimal such J , it will be sufficient to
show that if J andK are two such, then their intersection J∩K is another one.
By enlarging J orK we may assume without loss of generality that J+K = Jq.
In that case S/(J ∩K) = (S/J)×(S/Jq) (S/K). Now the existence of liftings
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of ξq over S/J and S/K implies by condition H1 the existence of a lifting
over S/J ∩K. Note that by iteration, H1 implies surjectivity of the given map
for any surjective A′′ → A, since any surjective map can be factored into a
finite number of small extensions. Then we take Rq+1 = S/Jq+1, and ξq+1

any lifting of ξq, which exists by construction.
Thus we obtain a surjective system of rings Rq and compatible elements

ξq ∈ F (Rq). Let J = ∩Jq and take R to be S/J . Then R is a complete local
ring and Rq = R/J̄q, where J̄q = Jq/J . Since Jq ⊇ mq+1 for each q, and
conversely, for each s, some J̄q ⊆ ms

R (Ex. 16.2), it follows that the ideals J̄q

form a base for the mR-adic topology of R. Therefore R = lim←− Rq, and we

define ξ = lim←− ξq ∈ F̂ (R). This gives the desired map hR → F (15.1).
I claim that (R, ξ) is a miniversal family for F . Since tR ∼= tF by construc-

tion, we have only to show for any surjective map A′ → A and any η′ ∈ F (A′)
restricting to η ∈ F (A), and any map R → A inducing η, that there exists a
lifting to a map R → A′ inducing η′. Since any surjective map factors into a
sequence of small extensions, it suffices to treat the case of a small extension
A′ → A.

Let u : R → A induce η. It will be sufficient to show that u lifts to some
map v : R → A′. For then v will induce an element η′′ ∈ F (A′) lying over
η. Because of (16.1c), whose proof used only (16.1e), which is our H2, there
is an element of tF sending η′′ to η′ by the group action. This same tF = tR
acts on the set of v : R → A′ restricting to u, so then we can adjust v to a
homomorphism v′ : R→ A′ inducing η′.

Thus it remains to show that for a small extension A′ → A, the given map
u : R → A lifts to a map v : R → A′. Since A is an Artin ring, u factors
through Rq for some q. On the other hand, R is a quotient of the power
series ring S, and the map u will lift to a map of S into A′. Thus we get a
commutative diagram

S
w→ Rq ×A A′ → A′

↓ ↓ p′ ↓ p
R → Rq → A

Note that p′ : Rq ×A A′ → Rq is also a small extension. If this map has a
section s : Rq → Rq ×A A′, then using s and the second projection we get a
map Rq → A′ lifting u, and we are done.

If p′ does not have a section, then I claim that the map w is surjective.
Indeed, if w is not surjective, then Imw is a subring mapping surjectively to
Rq. The kernel of Imw → Rq must be strictly contained in I = ker p′, which
is a one-dimensional vector space, so this kernel is zero, the map Imw → Rq

is an isomorphism, and this gives a section. Contradiction!
Knowing thus that w is surjective, let J = kerw. Then J ⊆ Jq, since S

maps to Rq via w. On the other hand, J ⊇ mJq, since p′ is a small extension.
But also we have ξq ∈ F (Rq) and there is an η′ ∈ F (A′) lying over η ∈ F (A),
so byH1, there is a ξ′ ∈ F (Rq×AA

′) lying over both of these. Since Rq×AA
′ =

S/J , this ideal J satisfies the condition imposed in the construction. Therefore



16. Schlessinger’s Criterion 115

J ⊇ Jq+1 and w factors through Rq+1. This gives the required lifting of R to
A′, and completes the proof that (R, ξ) is a miniversal family for F .

Finally, suppose in addition that F satisfies H4. To show that hR(A) →
F (A) is bijective for all A, it will be sufficient to show inductively, start-
ing with A = k, that for any small extension p : A′ → A we have that
Hom(R,A′)→ Hom(R,A)×F (A)F (A′) is bijective. So fix u ∈ Hom(R,A) and
the corresponding η ∈ F (A). If there is no map of R to A′ lying over u, then
there is also no η′ ∈ F (A′) lying over η, and there is nothing to prove. On the
other hand, if p−1(η) is nonempty, then the action of tF on p−1(η) is bijective
by H4, and the action of tR on the set of homomorphisms R→ A′ lying over
u is bijective, since hR is pro-representable, and tR ∼= tF by miniversality, so
our map is bijective as required.

Remark 16.2.1. If (H4) holds, then the map of (H1) is bijective for all small
extensions A′′ → A. In particular, (H4) implies (H2). Indeed, if A′′ → A is a
small extension, then A′ ×A A′′ → A′ is also a small extension. So the set of
elements of F (A′×AA

′′) going to a fixed element α′ of F (A′) is in one-to-one
correspondence with the set of elements of F (A′′) going to the image of α′ in
F (A). Hence F (A′ ×A A′′) = F (A′)×F (A) F (A′′).

Next we include some technical results on fibered products and flatness
that will be used in studying the pro-representability and existence of versal
families for various functors. These results can be skipped at a first reading
and referred to as needed.

We are dealing here with fibered products of sets. If A′ and A′′ are sets,
with maps A′ → A, A′′ → A to a set A, then the fibered product is

A′ ×A A′′ = {(a′, a′′) | a′ and a′′ have the same image a ∈ A}.

If A,A′, A′′ have structures of abelian groups, or rings, or rings with identity
and the maps respect these structures, then A′ ×A A′′ has a structure of the
same kind. This product is categorical; namely, given any set C together with
maps C → A′ and C → A′′ that compose to give the same map to A, there
exists a unique map of C to A′ ×A A′′ factoring the given maps.

Note that if we consider the schemes SpecA, SpecA′, SpecA′′, this is not
related to the fibered product in the category of schemes. The arrows go in
the opposite direction.

If M,M ′,M ′′ are modules over the rings A,A′, A′′ and we are given com-
patible maps of modules M ′ → M , M ′′ → M , then M ′ ×M M ′′ is a module
over A′ ×A A′′.

If F ,F ′,F ′′ are sheaves of abelian groups on a fixed topological space X0,
and we are given maps F ′ → F and F ′′ → F , the assignment of F ′(U)×F(U)

F ′′(U) to each open set U is a sheaf of abelian groups on X0, which we will
denote simply by F ′ ×F F ′′.

If OX ,OX′ ,OX′′ are sheaves of rings on X0, together with maps OX′ →
OX and OX′′ → OX , and F ,F ′,F ′′ are sheaves of modules with maps over
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the respective sheaves of rings, then F ′ ×F F ′′ is a sheaf of modules over the
sheaf of rings OX′ ×OX

OX′′ .
If OX ,OX′ ,OX′′ define scheme structures on the topological space X0,

then so does OX′ ×OX
OX′′ . This will be a fibered sum in the category of

scheme structures on X0. One just has to check that localization is compatible
with fibered product of rings and modules.

Lemma 16.3. Let A,A′, A′′ be abelian groups, with maps A′ → A, A′′ → A.
In the diagram

0 → keru′ → A′ ×A A′′ u′
→ A′

↓ ↓ ↓
0 → keru → A′′ u→ A

(a) the natural map keru′ → keru is bijective;
(b) if u is surjective, so is u′.

Proof. Immediate diagram chasing.

Remark 16.3.1. The same applies to rings, modules, and sheaves on a fixed
topological space.

Proposition 16.4. Let A,A′, A′′ be rings with maps as before, and let A∗ =
A′ ×A A′′. Let M,M ′,M ′′ be modules over A,A′, A′′ respectively, with com-
patible maps M ′ → M and M ′′ → M , and assume that M ′ ⊗A′ A → M and
M ′′ ⊗A′′ A→M are isomorphisms. Let M∗ = M ′ ×M M ′′.

(a) Assume that A′′ → A is surjective. Then M∗ ⊗A∗ A′ →M ′ is an isomor-
phism (and therefore also M∗ ⊗A∗ A→M is an isomorphism).

(b)Now assume furthermore that J = ker(A′′ → A) is an ideal of square zero,
and that M ′,M ′′ are flat over A′, A′′ respectively. Then M∗ is flat over
A∗, and also M∗ ⊗A∗ A′′ →M ′′ is an isomorphism.

Proof. (a) Since A′′ → A is surjective and M ′′ ⊗A′′ A = M , it follows that
M ′′ → M is surjective. Then by Lemma 16.3, M∗ → M ′ is surjective, and
hence M∗ ⊗A∗ A′ → M ′ is surjective. To show injectivity, we consider an
element Σ〈m′

i,m
′′
i 〉⊗bi in the kernel of this map and show by usual properties

of the tensor product that it is zero (Ex. 16.3).
(b) Since M ′′ is flat over A′′ and M ′′ ⊗A′′ A ∼= M , and J2 = 0, we have

an exact sequence
0→ J ⊗A M →M ′′ →M → 0

by the local criterion of flatness (2.2). From (16.3) it then follows that

0→ J ⊗A M →M∗ →M ′ → 0

is also exact. Now M ′ is flat over A′ by hypothesis, and M∗ ⊗A∗ A′ ∼= M ′ by
part (a) above, and since M ′⊗A′A ∼= M , we have also J⊗AM = J⊗A∗M∗ =
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J ⊗A′ M ′. Now again by (2.2) it follows that M∗ is flat over A∗. (Note that
the kernel of A∗ → A′ is again J with J2 = 0.)

For the last statement, we tensor the sequence 0 → J → A′′ → A → 0
with M∗, to obtain

0→ J ⊗M∗ →M∗ ⊗A∗ A′′ →M∗ ⊗A∗ A→ 0.

On the right we have just M , because of part (a) and the hypothesis M ′ ⊗A′

A ∼= M , and on the left we have J ⊗M , so comparing with the sequence for
M ′′ above we obtain M∗ ⊗A∗ A′′ →M ′′, also an isomorphism.

Example 16.4.1 (Schlessinger). Without the hypothesis A′′ → A surjec-
tive, the proposition may fail. For example, take A = k[t]/(t3), take A′ =
A′′ = k[x]/(x2), and for homomorphisms send x to t2. Then A∗ = A′ = A′′.
Now take M = A, M ′ = M ′′ = A′ = A′′ (note that these are all flat), and for
morphisms take M ′ →M the natural injection, but for M ′′ →M the natural
injection followed by multiplication by the unit 1 + t. Then M ′ ⊗A′ A ∼= M
and M ′′ ⊗A′′ A ∼= M , but M∗ is just k · x, which is not flat over A∗, nor does
its tensor product with A′ or A′′ give M ′ or M ′′.

References for this section. For the proof, I have mainly followed
Schlessinger’s original paper [145]. The proof is also given in the appendix
of Sernesi’s notes [151], and in abbreviated form in Artin’s Tata lectures [8].
See also [152, §2.3]. The results on fibered products are also from [145], though
he proves (16.4) only for free modules.

Exercises.

16.1. Let F : C → (Sets) be a functor having properties (a) and (c) of (16.1).
Show that tF = F (D) has a natural structure of a k-vector space as follows. For
each λ ∈ k, the ring homomorphism λ : D → D sending t to λt induces a map
λ∗ : tF → tF . Taking two copies of D, say D1 = k[t1]/t

2
1 and D2 = k[t2]/t

2
2, consider

the ring homomorphism D1 ×k D2 → D that sends ti → t, i = 1, 2. This induces a
map F (D1 ×k D2) → F (D). Using (a) and (c) this gives a map μ : tF × tF → tF .
Then taking λ∗ and μ as scalar multiplication and addition makes tF into a k-vector
space.

16.2.

(a) Let (A,m) be a complete local ring. Let {an} be a descending sequence of ideals,
with ∩an = (0). Show that for each s, there is an n(s) such that for n ≥ n(s),
an ⊆ ms. (This is called Chevalley’s theorem in [175, Vol. II, VIII, Thm. 13,
p. 270].)

(b) To show that this result fails if A is not complete, let A be a local ring of a node
on an integral curve. Use the embedding of A in its normalization Ã to make a
counterexample.

16.3. Complete the proof of (16.4a).
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16.4. We say that a functor F has a tangent theory if for every small extension
p : A′ → A and every η ∈ F (A), there is a transitive action of tF on p−1(η).

(a) Suppose that F has a tangent theory and an obstruction theory (Ex. 15.5), and
that both of these are functorial for morphisms of small extensions. Then show
that F satisfies (H1) and (H2) of (16.2).

(b) If in addition F satisfies (H0) and (H3), it has a miniversal family.

16.5. Let X0 be a nonsingular projective variety over k, and for any A ∈ C, let
F (A) be the set of isomorphism classes of deformations of X0 over A. For any small
extension p : A′ → A and any X ∈ F (A), let Ex(X,A′) be the set of equivalence
classes of extensions of X over A′, as in §10. Show that there is a surjective map
Ex(X,A′) → p−1(X). Conclude from (10.3) that F has a tangent theory and an
obstruction theory, and therefore has a miniversal family. (We prove a stronger
result in (18.1), without the hypothesis X0 nonsingular.)

17. Hilb and Pic are Pro-representable

There is a general theorem of Grothendieck (1.1), [45, exp. 221] that the
Hilbert functor parametrizing closed subschemes of a given projective scheme
over k is representable. From this it follows (15.2.1) that the local functor is
pro-representable. However, the proof of existence of the Hilbert scheme is
long and involved (and not given in this book), so it is of some interest to give
an independent proof of pro-representability of the local Hilb functor.

Let X0 be a given closed subscheme of P
n
k . For each local artinian k-algebra

A we let F (A) be the set of deformations of X0 over A, that is, the set of
closed subschemes X ⊆ P

n
A, flat over A, such that X ×A k ∼= X0. (Here by

abuse of notation, X ×A k means X ×Spec A Spec k, the fibered product in
the category of schemes, not the fibered product of sets!) Then F is a functor
from the category C of local artinian k-algebras to (Sets), which we call the
local Hilb functor of deformations of X0.

Theorem 17.1. For a given closed subscheme X0 ⊆ P
n
k , the local Hilb functor

F is pro-representable.

Proof. We apply Schlessinger’s criterion (16.2). Condition (H0) says that
F (k) should have just one element, which it does, namely X0 itself.

Condition (H1) says that for every small extension A′′ → A, and any map
A′ → A, the map

F (A′ ×A A′′)→ F (A′)×F (A) F (A′′)

should be surjective. So suppose we are given closed subschemes X ′ ⊆ P
n
A′ and

X ′′ ⊆ P
n
A′′ , flat over A′ and A′′, respectively, and both restricting to X ⊆ P

n
A.

We let X∗ be the scheme structure on the topological space X0 defined by the
fibered product of sheaves of ringsOX′×OX

OX′′ (§16). Letting A∗ = A′×AA
′′,

we have surjective maps of sheaves OP
n
A∗ to OX′ and to OX′′ , giving the same
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composed map to OX , hence a surjective map to OX∗ . Therefore X∗ is a
closed subscheme of P

n
A∗ . It is flat over A∗ and restricts to OX′ and OX′′ over

A′ and A′′ by (16.4). Thus X∗ is an element of F (A∗) mapping to X ′ and
X ′′, and (H1) is satisfied.

Condition (H2) is a consequence of (H4) (16.2.1).
For (H3) we note that tF = F (k[t]) is the set of deformations of X0 over

k[t], which by (2.4) is H0(X0,NX0/Pn). Since X0 is projective, this is a finite-
dimensional vector space.

For (H4), let η ∈ F (A) be given by a deformation X ⊆ P
n
A of X0. Then

p−1(η) consists of subschemes X ′ ⊆ P
n
A′ , flat over A′, with X ′ ×A′ A ∼= X.

If such exist, they form a torsor under the action of tF by (6.2).
Thus all the conditions are satisfied and F is pro-representable.

There is also a theorem of Grothendieck [45, exp. 232] that the Picard
functor is representable, from which it follows that the local functor is pro-
representable, but here we give an independent proof.

Let X0 be a given scheme over k, and L0 a given invertible sheaf on X0.
The local Picard functor F assigns to each local artinian k-algebra A the set
of isomorphism classes of invertible sheaves L on X = X0 ×k A for which
L ⊗OX0

∼= L0.

Theorem 17.2. Assume X0 is projective over k and that H0(X0,OX0) = k.
Then the local Picard functor for a given invertible sheaf L0 on X0 is pro-
representable.

Proof. We apply Schlessinger’s criterion. F (k) consists of the one element
L0, so (H0) is satisfied. For (H1), let invertible sheaves L′ on X ′ and L′′ on
X ′′ be given such that L′ ⊗OX

∼= L′′ ⊗OX
∼= L on X. Choose maps L′ → L

and L′′ → L inducing these isomorphisms. Then we take L∗ = L′ ×L L′′ to
be the fibered product of sheaves. It is an invertible sheaf on X∗ = X0×k A

∗,
where A∗ = A′ ×A A′′, and by (16.4) it restricts to L′ on X ′ and L′′ on X ′′.
Thus (H1) holds.

(H2) is a consequence of (H4) (16.2.1).
By (2.6), the tangent space tF is H1(X0,OX0), which is finite-dimensional,

since X0 is projective, so (H3) holds. (H4) is a direct consequence of (6.4),
since we have assumed H0(OX0) = k. Thus F is pro-representable.

References for this section. The Hilbert scheme was first constructed by
Grothendieck [45]. Other proofs of its existence can be found in Mumford
[115] in a special case, in the lecture notes of Sernesi [151], and in the book of
Kollár [88]. See also [152, Ch. 4]. Representability of the Picard functor was
also proved by Grothendieck [45].

Exercise.

17.1. Verify similarly that the local Hilbert-flag functor of deformations of a pair
of subschemes Y0 ⊆ X0 ⊆ P

n
k (Ex. 6.8) is pro-representable.
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18. Miniversal and Universal Deformations of Schemes

In this section we will discuss the question of pro-representability or existence
of a miniversal family of deformations of a scheme.

If we start with a global moduli problem, such as the moduli of curves
of genus g, the global functor considers flat families X/S for a scheme S,
whose geometric fibers are projective nonsingular curves of genus g, up to
isomorphism of families. The formal local version of this functor around a
given curve X0/k would assign to each Artin ring A with residue field k the
set F1(A) of isomorphism classes of flat families X/A such that X ⊗A k is
isomorphic to X0. We call this the crude local functor (cf. 23.3.1).

Since the functor F1 is not well behaved, we consider instead the functor
of local deformations of X0, as in §10. Recall that a deformation of X0 over A
is a pair (X, i), where X is a scheme flat over A, and i : X0 → X is a closed
immersion such that the induced map i⊗k : X0 → X⊗A k is an isomorphism.
We consider the functor F (A) that to each A assigns the set of deformations
(X, i) of X0 over A, up to equivalence, where an equivalence of (X1, i1) and
(X2, i2) means an isomorphism ϕ : X1 → X2 compatible with the maps i1, i2
from X0.

The effect of using the functor F instead of F1 is to leave possible auto-
morphisms of X0 out of the picture and thus simplify the discussion. We will
consider the relation between these two functors later (18.4).

Theorem 18.1. Let X0 be a scheme over k. Then the functor F (defined
above) of deformations of X0 over local Artin rings has a miniversal family
under either of the two following hypotheses:

(a)X0 is affine with isolated singularities.
(b)X0 is projective.

Proof. We verify the conditions of Schlessinger’s criterion (16.2).

(H0) F (k) consists of the single object (X0, id). If σ is an automorphism of
X0, the object (X0, σ) is isomorphic to (X0, id) by the map σ : X0 →
X0.

(H1) Suppose we are given a small extension A′′ → A and any map A′ → A,
and suppose we are given objects X ′ ∈ F (A′), X ′′ ∈ F (A′′) restricting
to X ∈ F (A). Then X ′ ⊗A′ A ∼= X, the isomorphism being compatible
with the maps from X0, so we can choose a closed immersion X ↪→ X ′

inducing this isomorphism. Similarly choose X ↪→ X ′′. Then we define
X∗ by the fibered product of sheaves of rings OX∗ = OX′ ×OX

OX′′ ,
and X∗ will be an object of F (A∗) reducing to X ′ and X ′′, where
A∗ = A′ ×A A′′ (16.4).

(H2) Suppose A = k in the situation of (H1) (which effectively means A′′ ∼=
k[t]) and let X∗ be constructed as in (H1). If W is any other object
of F (A∗) restricting to X ′ and X ′′ respectively, then we can choose
immersions X ′ ↪→ W and X ′′ ↪→ W inducing these isomorphisms.
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Since these maps are all compatible with the immersions from X0, they
agree with the chosen maps X ↪→ X ′ and X ↪→ X ′′, since in this case
X = X0. Now by the universal property of fibered product of rings,
there is a map X∗ → W compatible with the above maps. Since X∗

and W are both flat over A∗, and the map becomes an isomorphism
when restricted to X0, we find that X∗ is isomorphic to W (Ex. 4.2),
and hence they are equal as elements of F (A∗).

(H3) Here is the only place in the proof that we need the hypothesis (a)
or (b).
(a) Let X0 = SpecB. Then tF = T 1

B/k by (5.2). This module is sup-
ported at the finite number of singular points of X0 (Ex. 4.3), so
has finite length, i.e., tF is a finite-dimensional vector space.

(b) For arbitraryX0, the tangent space tF corresponds to deformations
over the dual numbers D. Because of the exact sequence (Ex. 5.7)

0→ H1(X0, TX0)→ Def(X0/k,D)→ H0(X0, T 1
X0

)→ · · · ,

we see that if X0 is projective, the two outside groups are finite-
dimensional vector spaces, and so Def(X0/k,D) is also.

Thus conditions (H0)–(H3) are satisfied, and F has a miniversal family.

Examples 18.1.1. We have seen (15.2.3) that the plane curve singularity
xy = 0 has a miniversal deformation space, but that the functor is not pro-
representable. Thus we cannot expect to have a pro-representable functor
without further hypotheses.

18.1.2. A rational ruled surface is an example of a nonsingular projective
variety X0 for which the functor is not pro-representable (Ex. 19.2).

Next, we consider conditions under which the functor F is actually pro-
representable.

Theorem 18.2. Let X0/k be given and assume the hypotheses of (18.1)
satisfied. Then the functor F of deformations of X0 is pro-representable
if and only if for each small extension A′ → A, and for each deforma-
tion X ′ over A′ restricting to a deformation X over A, the natural map
Aut(X ′/X0) → Aut(X/X0) of automorphisms of X ′ (and X) restricting to
the identity automorphism of X0 is surjective.

Proof. Suppose that Aut(X ′/X0) → Aut(X/X0) is surjective for every X ′

lying over X. We need to verify condition (H4) of (16.2). Let X ′
1,X

′
2 be

elements of F (A′) inducing the same element X of F (A). If X ↪→ X ′
1 and

X ↪→ X ′
2 are maps inducing the isomorphisms X ′

1⊗A′A ∼= X and X ′
2⊗A′A ∼=

X, and if X ′
1 and X ′

2 are isomorphic as deformations of X0, then I claim
that the inclusions X ↪→ X ′

1 and X ↪→ X ′
2 are isomorphic as extensions of X

over A′.
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Indeed, let u′ : X ′
1 → X ′

2 be an isomorphism over X0. Then u = u′⊗A′A is
an automorphism of X over X0. By hypothesis this lifts to an automorphism
σ of X ′

1. Then v = u◦σ−1 : X ′
1 → X ′

2 is an isomorphism inducing the identity
on X, so X ′

1 and X ′
2 are equivalent as extensions of X over A′.

Now by (Ex. 5.7) and (10.2), Def(X/A,A′) is a principal homogeneous
space under the action of tF , so condition (H4) of Schlessinger’s criterion is
satisfied, and F is pro-representable.

Conversely, suppose that F is pro-representable, let X ∈ F (A′) restrict
to X ∈ F (A), and choose a map u : X ↪→ X ′ inducing the isomorphism
X

∼→ X ′ ⊗A′ A. Let σ ∈ Aut(X/X0). Then u′ = u ◦ σ : X ↪→ X ′ gives
another element of Def(X/A,A′), and so u and u′ differ by an element of tF ,
by (Ex. 5.7) and (10.2). But u and u′ define the same element X ′ ∈ F (A′),
lying over X, so by condition (H4), this element of tF must be zero. Hence u
and u′ are equal as elements of Def(X/A,A′); in other words there exists an
isomorphism τ : X ′ → X ′ over X0 such that u′ = τ ◦ u. Restricting to X we
obtain σ = τ | X. Thus τ ∈ Aut(X ′/X) lifts σ, and the map is surjective.

Satisfying as it may be to have a necessary and sufficient condition for
pro-representability, this condition is difficult to apply in practice, so we will
give a corollary and some examples.

Corollary 18.3. Let X0/k be a projective scheme with H0(X0, TX0) = 0 (in
which case we say “X0 has no infinitesimal automorphisms”). Then the func-
tor of deformations of X0/k is pro-representable.

Proof. We will show, by induction on the length of A, that for any defor-
mation X of X0 over A, Aut(X/X0) = {id}. Then obviously the condition of
(18.2) will be satisfied.

We start the induction by noting that Aut(X0/X0) = {id}. And here it
is important that we are using the functor F , and not the other functor F1

mentioned at the beginning of this section! Thus it does not matter whether
X0 has automorphisms as a scheme over k.

Inductively, assume that Aut(X/X0) = {id}, where X is a deformation
over A. Consider a small extension A′ → A and any X ′ ∈ F (A′) restricting
to X. Choose a map X ↪→ X ′ inducing the isomorphism X

∼→ X ′ ⊗A′ A.
Any automorphism of X ′ restricts to the identity on X, by the induction
hypothesis, so it is an automorphism of the deformation X ↪→ X ′. Since these
are classified by H0(X0, TX0) = 0, (10.2.2) this automorphism is the identity.

Example 18.3.1. Let X0 be a nonsingular projective curve over the alge-
braically closed field k. If the genus g is zero, X0 = P

1
k. In this case

H0(X0, TX0) has dimension 3, but still, as we have seen (15.2.2), the func-
tor is pro-representable, represented by a single point. Thus the condition of
(18.3) is not necessary for the functor to be pro-representable.

If g = 1, we have an elliptic curve. This case is discussed below, (18.4.2)
and (Ex. 18.2).
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If g ≥ 2, then the tangent sheaf T has degree 2−2g < 0, so H0(X0, T ) is 0.
Thus the functor of deformations ofX0 is pro-representable. Since there are no
obstructions (Ex. 10.4), the formal moduli space is smooth, of dimension 3g−3
(5.3.2). Note that it does not matter whether X0 has a finite group of auto-
morphisms. What counts here is that it has no infinitesimal automorphisms,
such as might arise for example from a continuous group of automorphisms
of X0.

18.3.2. What can we say about algebraic surfaces? We have seen that P
2 is

rigid, so its deformations are pro-represented by a point, even though it has
infinitesimal automorphisms.

For surfaces of degree d ≥ 2 in P
3, if d = 2, the quadric surface is

rigid (20.2.2), so its deformations are pro-representable. For d ≥ 3 we obtain
H0(T 0) = 0 (20.2.2), so (18.3) applies, and the functor is pro-representable.

There are rational ruled surfaces for which the functor is not pro-represen-
table (Ex. 19.2).

An abelian surface has infinitesimal automorphisms, but still its deforma-
tion functor is pro-representable (Ex. 18.3).

Now let us return to the question of comparing the functors F and F1

mentioned at the beginning of this section. Recall that given a scheme X0/k,
F is the functor of deformations of X0 over A, that is, pairs (X, i) where X
is flat over A, and i : X0 ↪→ X is a morphism such that i⊗ k : X0 → X ⊗ k is
an isomorphism, while F1 is the functor of flat families X/A such that there
exists an isomorphism X ⊗ k ∼= X0. There is a natural “forgetful” functor
from F to F1.

The following result is proved using the same kind of arguments as in the
earlier part of this section.

Theorem 18.4. Suppose the hypotheses of (18.1) satisfied. Then:

(a) The crude local functor F1 has a versal family.
(b)F1 has a miniversal family if and only if in addition, AutX → AutX0

is surjective for each flat family X over the dual numbers D. In this case
tF1 = tF .

(c) The following conditions are equivalent:
(i) F1 = F and F is pro-representable.
(ii) F1 is pro-representable.
(iii) AutX ′ → AutX is surjective for every small extension A′ → A,

where X ′ is a flat family over A′ and X = X ′ ⊗A′ A.

Proof. (a) The map F → F1 is strongly surjective, so a miniversal family for
F gives a versal family for F1.

(b) and (c) are proved by arguments similar to those above (Ex. 18.1).

Example 18.4.1. Let us take X0 to be the affine scheme Spec k[x, y]/[xy].
This is the node that was discussed previously (14.0.1).
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(a) It is easy to check that the automorphisms of X0 are of two types:

(1)

{
x′ = ax,

y′ = by,
(2)

{
x′ = ay,

y′ = bx,

where a, b ∈ k∗. If we attempt to lift an automorphism of type (1) to the
family xy − t over the dual numbers D = Spec k[t]/t2, we will need

{
x′ = ax+ tf,

y′ = by + tg,

for some f, g ∈ k[x, y] satisfying u(xy − t) = x′y′ − t, where u is a unit
u = λ+th in D[x, y]. To satisfy this equation, we find that ab = 1, f = xf1,
g = yg1, and h = ag1 + bf1. Thus the lifted automorphism is of the form

x′ = (a+ tf1)x,
y′ = (b+ tg1)y,

subject to the condition ab = 1, and with f1, g1 arbitrary elements of
k[x, y].
In particular, if we consider an automorphism of X0 with ab �= 1, it does
not lift. Thus AutX → AutX0 is not surjective, and F1 has a versal family,
but does not have a miniversal family.
Another way to interpret this is to let AutX0 act on the set F (D) = tF of
deformations of X0 over D. Any element of F (D) is defined by xy−ct = 0
for some c ∈ k. We let AutX0 act on this set by replacing i : X0 ↪→ X
by i ◦ σ : X0 ↪→ X for any σ ∈ AutX0. The calculation above shows that
this action is nontrivial. In fact, it has two orbits, corresponding to c = 0
and c �= 0, and the set F1(D) = tF1 is the quotient space consisting of two
elements, the trivial deformation and the nontrivial deformation. Thus tF1

is not even a vector space over k.
(b) Now let us consider lifting automorphisms of the deformation X given by

xy − t over the dual numbers to the deformation X ′ given by xy − t over
the ring A′ = k[t]/(t3).
Automorphisms of X/X0 are given by

x′ = (1 + tf)x,
y′ = (1 + tg)y,

with f, g ∈ k[x, y] arbitrary. To lift it to an automorphism of X ′ we need

x′ = (1 + tf)x+ f ′t2,

y′ = (1 + tg)y + g′t2,

for some f ′, g′ ∈ k[x, y]. A calculation similar to the one above shows that
for this to be possible, there must exist a polynomial h ∈ k[x, y] for which

hxy = f + g + ay + bx+ fgxy.
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In particular, f + g ∈ (x, y). So if we take f = 1, g = 0, for example,
the automorphism does not lift. This confirms, by (18.2), that F is not
pro-representable, as we have noted earlier (14.0.4).

Example 18.4.2 (Pointed elliptic curves). Let X0 be a nonsingular pro-
jective curve of genus 1 over k, and let P0 be a fixed point. Assume char
k �= 2, 3. We consider two functors associated to the pair (X0, P0). One, F (A),
consists of isomorphism classes of deformations of the pointed curve (X0, P0)
over A, that is, flat families X, together with a section P : SpecA→ X, and
an inclusion i : X0 → X such that i ⊗ k is an isomorphism of (X0, P0)
to (X,P ) ⊗ k. The other is the crude functor F1(A), which is just iso-
morphism classes of flat families X over A, with a section P , such that
(X,P )⊗ k ∼= (X0, P0).

Repeating the analysis of [57, IV, 4.7] we find that any family of pointed
curves (X,P ) over the dual numbers D has an equation

y2 = x(x− 1)(x− λ)

with λ ∈ D, and that the group of automorphisms of (X,P ) has order
⎧
⎪⎨

⎪⎩

6 if λ = −ω,−ω2 (j = 0),
4 if λ = −1, 1

2 , 2 (j = 123),
2 otherwise.

If we take X0 to be a curve with j = 123, and X to be the family over
D = k[t]/t2 defined by λ = −1 + t, then the group of automorphisms of
(X,P ) has order 2, while Aut(X0, P0) has order 4. In particular, Aut(X,P )→
Aut(X0, P0) is not surjective, so F1 does not have a miniversal family (18.4).

On the other hand, even though X0 has infinitesimal automorphisms, since
H0(X0, T ) = H0(X0,OX0) �= 0, there are none leaving P0 fixed, and so the
method of (18.3) shows that F is pro-representable.

In this case tF = H1(T ) has dimension 1, and the deformations over D
are given by the equation above with λ = −1 + at for any a ∈ k. The action
of Aut(X0, P0) on this space sends a to −a, so tF1 = k/{±1}, which is not a
k-vector space.

Suppose now we take X0 to be an elliptic curve with j �= 0, 123. Then
Aut(X0, P0) has order 2, corresponding to the automorphisms y �→ ±y, and
these lift to any deformation. So in this case F1 = F is pro-representable.

Because of the form of the equations above, we can think of the ring pro-
representing F as the completion of the λ-line at the corresponding point.
In the case j �= 0, 123, the λ-line is étale over the j-line, so this is also equal
to the completion of the j-line at that point.

References for this section. For a description of versal deformation spaces
of germs of singularities in the complex analytic category, with Grauert’s
theorem on the existence of a versal deformation of an isolated singularity
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[38], and a detailed study of deformations of plane curve singularities in the
analytic case, see the recent book [42]. While we have shown the existence of
miniversal deformation spaces (18.1) in certain cases, the actual computation
of examples is difficult, but can be done using a computer algebra package
[159], [160].

Exercises.

18.1. Complete the proof of (18.4).

18.2. Here is another approach to deformations of an elliptic curve. Let X0/k
be a nonsingular projective curve of genus 1, over an algebraically closed field k,
of char k �= 2, 3. Let P0 ∈ X0 be a fixed point. Recall [57, V, 1.3.7, 4.8] that the
assignment Q0 ∈ X0 goes to OX0(Q0 − P0) is a bijection from the set of closed
points of X0 to the group Pic0(X0) of invertible sheaves of degree 0. This makes X0

into a group variety.

(a) If X is a flat deformation of X0 over A, show that there is a section P : SpecA→
X restricting to P0 ∈ X0. Then show that the assignment that to each section Q
of X/A gives OX(Q− P ) is a bijection from sections of X to invertible sheaves
on X whose restrictions to X0 have degree 0.

(b) If Q is another section of X then the operation ⊗OX(Q − P ) on Pic0X gives,
via the bijection of (a), an automorphism of X over A sending P to Q. Show
also that an automorphism of X leaving P fixed and restricting to the identity
on X0 must be the identity.

(c) Using (b), show that for any extension X ′ of X to an A′, where A′ → A is a
small extension, AutX ′/X0 → AutX/X0 is surjective.

(d) Conclude from (18.2) that the functor of deformations ofX0 is pro-representable,
even though (18.3) does not apply.

(e) Show that the forgetful functor sending deformations of pointed elliptic curves
(18.4.2) to deformations of (unpointed) elliptic curves is actually an isomor-
phism.

18.3. Generalize the methods of (18.4.2) and (Ex. 18.2) to show that deformations
of pointed abelian surfaces are pro-representable, and that this functor is isomorphic
to deformations of (plain) abelian surfaces.

18.4. Taking a hint from the example of a jump phenomenon for plane cuspidal
curves (26.6.7), show that the local deformation functor of the cuspidal curve y2 = x3

is not pro-representable, as follows. We consider the deformation y2 = x3+t2ax+t3b
over the Artin ring k[t]/t4.

(a) Show that x′ = x(1 + 4t), y′ = y(1 + 6t + 6t2) gives an automorphism of this
family over the ring k[t]/t3, restricting to the identity over k.

(b) Show that the automorphism of (a) does not lift to an automorphism of this
family over k[t]/t4.

18.5. Let C be a nonsingular curve in P
3, and let X be the threefold obtained by

blowing up C.

(a) Using the exact sequence of (13.1.1), show that if the genus of C is ≥ 2, and C
is not contained in a plane, then H0(TX) = 0, so the functor of deformations of
X is pro-representable.
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(b) Now let C be the curve of Sernesi’s example (Ex. 13.2–13.4), and show that
the scheme SpecR pro-representing the functor of deformations of X is reduced,
with two irreducible components of dimension 57, meeting along a subscheme of
codimension 1.

18.6. Let X0 and X ′
0 be affine schemes over k each having a single isolated sin-

gularity at points P, P ′. Assume that the singularities at P and P ′ are analytically
isomorphic. Show that there is an isomorphism of the deformation functors Def(X0)
and Def(X ′

0) with the property that for any Artin ring C, if X and X ′ are the corre-
sponding deformations of X0 and X ′

0 over C, then the singularities of X and X ′ at P
and P ′ are analytically isomorphic. In particular, if (R, ξ) and (R′, ξ′) are miniversal
families of deformations of X0 and X ′

0, then R and R′ are isomorphic complete local
rings. Hint: Reviewing the proofs of (10.1) and (18.1), show that obstructions and
extensions of deformations can all be computed over the completed local rings of X0

and X ′
0 at the singular points, where the T i functors are isomorphic (Ex. 4.4).

18.7. Let X0 and Y0 be linked by a complete intersection scheme Z0 inside P0,
the spectrum of a regular local ring over k, as in (Ex. 9.4). Let H = Def(X0, Z0) be
the functor of deformations of the pair X0 ⊆ Z0, which is a local analogue of the
Hilbert-flag scheme (Ex. 6.8).

(a) Use (Ex. 9.4) to show that the forgetful morphism H → Def(X0) is a strongly
surjective morphism of functors.

(b) Show that H is also equal to Def(Y0, Z0), so that we have a strongly surjective
morphism H → Def(Y0).

(c) Now assume that X0 and Y0 are local Cohen–Macaulay schemes with isolated
singularities, so they have miniversal families with complete local rings R for
Def(X0) and S for Def(Y0). We wish to compare R and S using H, but H may
not have a versal family because in general its tangent space tH will not be finite-
dimensional. So let H ′ be the image of H in Def(X0)×Def(Y0). That is, for any
Artin ring C, H ′(C) is the set of pairs (X,Y ), where X and Y are deformations
of X0 and Y0 over C, such that there exists a complete intersection Z linking
X to Y . Show then that tH′ is finite-dimensional and that H ′ has a miniversal
family.

(d) Now use (Ex. 15.7) to show that there is an isomorphism R[[t1, . . . , tr]] ∼=
S[[u1, . . . , us]] of formal power series rings over R and S for some r and s.
We say that the miniversal deformation spaces of X0 and Y0 are “equivalent up
to power series rings.” (This is a theorem of Buchweitz [13, 6.4.4].)

18.8. If the affine scheme X0 over k is rigid, then every infinitesimal deformation
is trivial (Ex. 10.3), so the one-point space will be a universal deformation space
for X0. We cannot expect global deformations of X0 to be trivial (Ex. 4.9), (5.3.1).
However, if X0 has an isolated singularity and is rigid, we can expect that nearby
singularities of a global family will be analytically isomorphic to the singularity of
X0.

(a) Over the complex numbers C, Grauert and Kerner [39] have shown that if a
germ of a local analytic space has an isolated singularity that is rigid (in the
complex analytic sense), then any germ of deformations is locally trivial, so that
nearby fibers have isomorphic complex analytic singularities. Show that if X0 is
a reduced affine scheme over C with a rigid singularity (in the algebraic sense),
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then the associated complex analytic space is also rigid in the analytic sense.
Thus the theorem of Grauert and Kerner will apply to the associated complex
analytic space of any global algebraic deformation of X0. Conclude that the
completions of the local rings at singularities of nearby fibers are isomorphic to
the completion of the local ring at the singular point of X0.

(b) For X0 an affine scheme with a rigid isolated singularity over any field k, give
a proof of the same result using Artin’s approximation theorem (21.4) applied
to a global deformation X1 of X0 compared to the trivial deformation X2 of X0

over the same base scheme S.
(c) Can you find a purely algebraic proof of this result using only the methods of

this book (without the methods of (a) and (b) above)?

19. Versal Families of Sheaves

Suppose we are given a scheme X0 over k and a coherent sheaf F0 on X0. For
each local Artin k-algebra A, let X = X0 ×k A be the trivial deformation of
X0. We consider the functor F that to each A assigns the set of deformations
of F0 over A, namely F coherent on X, flat over A, together with a map
F → F0 inducing an isomorphism F ⊗A k ∼= F0, modulo isomorphisms of F
over F0.

Theorem 19.1. In the above situation, assume that X0 is projective. Then
the functor F has a miniversal family.

Proof. We apply Schlessinger’s criterion (16.2), the proof being similar to
the case of deformations of schemes (18.1).

(H0) F (k) has just one element F0
id→ F0.

(H1) Given F ′/X ′ and F ′′/X ′′ restricting to the same F/X, we can choose
maps F ′ → F and F ′′ → F , compatible with the given maps to F0,
inducing isomorphisms F ′ ⊗ A → F and F ′′ ⊗ A → F . We now take
F∗ to be the fibered product sheaf F ′ ×F F ′′, which will be flat over
A∗ = A′ ×A A′′ by (16.4).

(H2) In case A = k, the maps to F = F0 are already specified, so F∗ is
uniquely determined.

(H3) Since X0 is projective, by (2.7) we have tF = Ext1X0
(F0,F0), which is

finite-dimensional.
Hence F has a miniversal family.

Remark 19.1.1. We could also consider the crude functor F1(A), which is
the set of isomorphism classes of F flat over X such that F ⊗ k ∼= F0, but
without specifying the map F → F0. As in the case of deformations of schemes
(18.4), if AutF → AutF0 is surjective for every such F over the ring of dual
numbers D, then F1 will also have a miniversal family, and tF1 = tF .
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Theorem 19.2. Assume X0 projective as above, but now assume in addition
that F0 is simple, i.e., H0(EndF0) = k. Then the functors F and F1 are equal
and pro-representable.

Proof. As in the case of deformations of schemes (18.2) and (18.4), it is merely
a matter of showing that AutF ′ → AutF is surjective for any F ′ → F .

We have assumed F0 simple, so H0(EndF0) = k, and AutF0 = k∗. For
any deformation F over A, there is a natural map A∗ → AutF , where A∗

denotes the group of units in A. If F ′ is an extension of F over A′ where
A′ → A is a small extension, then Aut(F ′/F) = End(F0) = k∗ by (7.1a),
whose proof does not need the hypothesis F0 locally free. Then we see, by
induction on the length of A, that for any F over A, AutF ∼= A∗. Now clearly
AutF ′ → AutF is surjective and so F is pro-representable. In particular,
AutF → AutF0 is surjective, and so the two functors F and F1 are equal.

Example 19.2.1. Let X0 be a nonsingular projective curve of genus g and let
F0 be a simple vector bundle of degree d and rank r. Then the deformations
of F0 are pro-represented by a regular local ring of dimension r2(g − 1) + 1
(Ex. 7.2).

Theorem 19.3. Let X0 be a projective scheme over k, and let E0 → F0 → 0
be a surjective map of coherent sheaves. For any local Artin k-algebra A, let
X = X0 ×k A, and let E = E0 ×k A. Then the Quot functor F of quotients
E → F → 0 with F flat over A and F ⊗A k = F0 is pro-representable.

Proof. Conditions (H0), (H1), (H2) of Schlessinger’s criterion are verified as
in the previous proof. The tangent space tF is H0(X0,Hom(Q0,F0)), which
is finite-dimensional, since X0 is projective. Note that statement (b) of (7.2)
does not make use of the hypotheses E0 locally free and hdF0 ≤ 1. Since
there are no automorphisms of a quotient of a fixed sheaf E , the criterion
(b) of (7.2) allows us to verify (H4), and so the functor is pro-representable.
Note also that in this case the functors F and F1 are the same, since there
are no automorphisms.

Remark 19.3.1. In fact, Grothendieck [45, exp. 221] has shown that given
X0/k and E0 on X0, the global Quot functor of quotients E0×S → F → 0 on
X = X0×S, flat over S, for any base scheme S, with given Hilbert polynomial
P , is representable by a scheme, projective over k.

Example 19.3.2 (Deformations of O(−1)⊕O(1) on P
1
k). Over any Artin

ring A, we can construct a coherent sheaf F on P
1
A as an extension

0→ OP
1
A
(−1)→ F → OP

1
A
(1)→ 0.

These extensions are classified by Ext1
P
1
A
(O(1),O(−1)) = H1(OP

1
A
(−2)) = A.

If we take a sheaf F defined by an element f ∈ A that is contained in the
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maximal ideal mA, then the image of f in k is 0, and so the sheaf F⊗Ak = F0

will be the trivial extension O(−1)⊕O(1) on P
1
k.

Taking Hom of the above sequence into F , we obtain an exact sequence

0→ H0(F(−1))→ Hom(F ,F)→ H0(F(1))→ · · · .

The group on the right is a free A-module of rank 4. The group on the left
depends on the choice of f ∈ A. Tensoring the original sequence with O(−1)
and taking cohomology, we get

0 = H0(O(−2))→ H0(F(−1))→ H0(O) δ→ H1(O(−2))→ · · · ,

and the image δ(1) is the element f ∈ A determining the extension.

(a) First we take A = D = k[t]/(t2) the dual numbers, and let the sheaf F
be defined by f = t. Then F ⊗D k is the trivial extension F0. Further-
more, since δ : A → A is multiplication by t, H0(F(−1)) ∼= kt and the
map H0(F(−1)) → H0(F0(−1)) is zero. Hence EndF → EndF0 is not
surjective, so AutF → AutF0 is not surjective, and we conclude that the
functor F1 does not have a miniversal family.

(b) Next, take A′ = k[t]/t3 → A = D, and let F ′ over A′ be defined by
f = t2 ∈ A′. Then, by considering the automorphism of F defined by t in
H0(F(−1)), the same reasoning shows that Aut(F ′/F0)→ Aut(F/F0) is
not surjective, and so we see that the functor F is not pro-representable.
All of this is related to the fact that the global family over S = Spec k[t]
defined by f = t exhibits a jump phenomenon: the fiber over t = 0 is
O(−1)⊕O(1), while the fiber over any point t �= 0 is isomorphic to O⊕O.
So this study of the automorphisms of extensions over Artin rings is the
infinitesimal analogue of a global jump phenomenon.

Exercises.

19.1. Let C be a closed subscheme of a scheme X. We consider deformations of the
sheaf OC as a sheaf of OX -modules. If we assume that C is integral and projective,
then H0(EndOC) = k, so the deformations of C are pro-representable, with tangent
space given by Ext1X(OC ,OC). Show that there is an exact sequence

0 → H0(NC)
α→ Ext1X(OC ,OC)

β→ H1(OC) → · · · .

Here, of course, H0(NC) represents deformations of C as a closed subscheme of X.
How do you interpret the map β? Can you give an example of a deformation of the
sheaf OC that is not in the image of α?

19.2. Use (19.3.2) to give an example of a nonsingular projective surface whose
deformation functor is not pro-representable. Let Y0 = P

1
k, let F0 be O(−1)⊕O(1),

and let X0 = PY0(F0), the associated projective space bundle. Then X0 is a rational
ruled surface with a morphism π0 : X0 → Y0 [57, V, §2].

(a) For any local Artin ring A, let Y = P
1
A, let F be a deformation of F0, and let

X = PY (F). Show that X is a deformation of X0, so that we have a morphism
of the functor F of deformation of F0 to the functor G of deformation of X0.
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(b) Show that tF → tG is an isomorphism.
(c) If X is any deformation of X0, show that the sheaf π∗

0OY0(1) lifts uniquely to
X, and that its sections also lift. Hence the map π0 : X0 → Y0 extends to a map
π : X → Y .

(d) If σ is an automorphism of the surface X, then σ acts on H0(π∗OY (1)) =
H0(OY (1)) and hence determines an automorphism τ of Y .

(e) Show that any automorphism of X can be factored into the product of an auto-
morphism of Y and an automorphism of X compatible with π, which then arises
from an automorphism of F .

(f) Conclude from (19.3.2) that there are deformations X and extensions X ′ for
which Aut(X ′/X0) → Aut(X/X0) is not surjective, and hence the functor of
deformation of X0 is not pro-representable.

20. Comparison of Embedded and Abstract
Deformations

There are many situations in which it is profitable to compare one deformation
problem to another. In this section we will compare deformations of a scheme
X0 as a closed subscheme of P

n to its deformations as an abstract scheme.
If F1 is the functor of Artin rings of embedded deformations, and F2 is the
functor of abstract deformations, then we have a “forgetful morphism” from
F1 to F2, which for every Artin ring A maps F1(A) → F2(A) by forgetting
the embedding.

As an application we compare embedded and abstract deformations of
surfaces in P

3 and prove Noether’s theorem that a general surface of degree
≥ 4 in P

3 contains only complete intersection curves.
We begin with a result on morphisms of functors.

Proposition 20.1. Let f : F1 → F2 be a morphism of functors on Artin
rings. Assume that F1 and F2 both have versal families corresponding to com-
plete local rings R1, R2. Then there is a morphism of schemes f̄ : SpecR1 →
SpecR2 corresponding to a homomorphism of rings ϕ : R2 → R1 such that
for each Artin ring A the following diagram is commutative:

Hom(R1, A)
ϕ∗
→ Hom(R2, A)

↓ ↓
F1(A)

f→ F2(A)

where the vertical arrows are the maps expressing the versal families. Further-
more, if R1 and R2 are miniversal families, then the map induced by f̄ on
Zariski tangent spaces tR1 → tR2 is just tF1 → tF2 given by F1(D)→ F2(D),
where D is the dual numbers.

Proof. Consider the inverse system (R1/m
n). The natural mapsR1 → R1/m

n

induce elements ξn ∈ F1(R1/m
n) forming a compatible sequence. By f we
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get a compatible sequence f(ξn) ∈ F2(R1/m
n). By the versal property of

R2 we get compatible maps R2 → R1/m
n and hence a homomorphism of

R2 → lim←−R1/m
n = R1. The rest is straightforward.

Now we will consider the case that F1 is the functor of embedded
deformations of a projective scheme X0 ⊆ P

n
k , F2 is the functor of abstract

deformations of X0, and f : F1 → F2 is the forgetful morphism. We know
that F1 is pro-representable (17.1) by a ring R1 and that F2 has a miniversal
family (18.1) given by a ring R2, and so we have an associated morphism
f̄ : SpecR1 → SpecR2.

Proposition 20.2. Suppose that X = X0 is a nonsingular subscheme of P
n.

Then the exact sequence

0→ TX → TPn |X → NX/Pn → 0

gives rise to an exact sequence of cohomology

0→ H0(TX)→ H0(TPn |X)→ H0(NX) δ0

→ H1(TX)

→ H1(TPn |X)→ H1(NX) δ1

→ H2(TX)→ H2(TPn |X)→ · · ·

in which the boundary map δ0 : H0(NX) → H1(TX) is just the induced map
on tangent spaces tF1 → tF2 of the deformation functors, and δ1 : H1(NX)→
H2(TX) maps the obstruction space of F1 to the obstruction space of F2.

Proof. The only thing to prove is the identification of δ0 and δ1 with the
corresponding properties of the functors F1 and F2, and this we leave to the
reader.

Remark 20.2.1. Because of this exact sequence, we can interpret H1(TPn |X)
as the obstructions to lifting an abstract deformation of X to an embedded
deformation of X. We can also interpret the image of H0(TPn |X) in H0(NX)
as those deformations of X0 induced by automorphisms of P

n.

Example 20.2.2. Let us apply this proposition to the case of a nonsingular
surface X of degree d ≥ 2 in P

3.
Restricting the Euler sequence on P

3 to X we obtain

0→ OX → OX(1)4 → TP3 |X → 0.

From the cohomology of this sequence we obtain h0(TP3 |X) = 15,
h1(TP3 |X) = 0 except for the case d = 4, in which case it is 1; and
h2(TP3 |X) = 0 for d ≤ 5, but �= 0 for d ≥ 6.

Next, we observe that the map H0(TP3 |X) → H0(NX) is surjective for
d = 2 and injective for d ≥ 3. Noting that NX

∼= OX(d) and using the
sequence above, this is a consequence of the following lemma.
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Lemma 20.3. Let f ∈ k[x0, . . . , xn] be a homogeneous polynomial of degree
d ≥ 3 whose zero scheme is a nonsingular hypersurface in P

n and assume that
char k � d. Let fi, i = 0, . . . , n, be the partial derivatives of f . Then the forms
xifj, for i, j = 0, . . . , n, are linearly independent forms of degree d.

Proof. Since the zero scheme of f is nonsingular, the subset of P
n defined by

(f, f0, . . . , fn) is empty. The Euler relation d ·f =
∑
xifi shows that this ideal

is the same as the ideal (f0, . . . , fn). Therefore it is primary for the maximal
ideal (x0, . . . , xn), and the fi form a regular sequence. Now the exactness of
the Koszul complex shows that the relations among the fi are generated by
the relations fifj − fjfi = 0. Since d ≥ 3, there are no relations with linear
coefficients.

Example 20.2.2 (continued). Now, using the fact that H1(NX) =
H1(OX(d)) = 0 for any surface in P

3, we can construct the following table for
the dimensions of the groups of (20.2):

d h0(TX) h0(TP3 |X) h0(NX) h1(TX) h1(TP3 |X)

2 6 15 9 0 0
3 0 15 19 4 0
4 0 15 34 20 1
≥ 5 0 15 large large 0

For d = 2, the quadric surface X has no abstract deformations, i.e., it is rigid
(5.3.1). On the other hand, it has a 6-dimensional family of automorphisms,
since X ∼= P

1 × P
1. The chart shows a 9-dimensional family of surfaces in P

3,
any two related by an automorphism of P

3.
For d ≥ 3 we obtain h0(TX) = 0. There are no infinitesimal auto-

morphisms, and so the functor F2 of abstract deformations is also pro-
representable.

Excepting the case d = 4 (for which see below), every abstract deformation
of a surface of degree d in P

3 is realized as a deformation inside P
3. Indeed,

since both functors are pro-representable, F1 has no obstructions, and the
map tF1 → tF2 is surjective, it follows that the morphism of functors F1 → F2

is strongly surjective (Ex. 15.8).
The same exact sequences as above show also that h2(TX) = 0 for d ≤ 5,

but h2(TX) �= 0 for d ≥ 6. Thus at least for 2 ≤ d ≤ 5 the abstract deforma-
tions are unobstructed. For d ≥ 6 see (Ex. 20.1).

Example 20.3.1. We examine more closely the case of a nonsingular surface
of degree 4 in P

3, which is aK3 surface. The functor of embedded deformations
is unobstructed, since h1(NX) = 0 as noted above. Also the functor F1 is pro-
representable, so the universal family is defined by a complete regular local
ring R1 of dimension 34. The abstract deformations are also unobstructed,
as noted above, so the functor F2 is pro-represented by a complete regular
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local ring R2 of dimension 20. The induced map on the Zariski tangent spaces
of the morphism SpecR1 → SpecR2 is not surjective, however, as we see
from the table above: its image has only dimension 19. Computing the image
step by step, we see that the image, which corresponds to abstract deforma-
tions that lift to embedded deformations, is a smooth subspace of SpecR2 of
dimension 19. In particular, there are abstract deformations of X0 that cannot
be realized as embedded deformations in P

3. (Over the complex numbers, this
corresponds to the fact that there are complex manifold K3 surfaces that are
not algebraic.)

Example 20.3.2. Using (20.3.1), we can give an example of an obstructed
deformation of a line bundle. Let X0 be a nonsingular quartic surface in P

3.
Let X be a deformation over the dual numbers D that does not lift to P

3.
Let L0 be the invertible sheaf OX0(1). I claim that L0 does not lift to X. For
suppose it did lift to an invertible sheaf L on X. Then the exact sequence

0→ L0 → L → L0 → 0

and H1(OX0(1)) = 0 would show that the sections x0, x1, x2, x3 ∈ H0(L0)
that define the embedding X0 ⊆ P

3 lift to L. Using these sections we would
obtain a morphism of X to P

3
D, which must be a closed immersion by flat-

ness. Thus X lifts to P
3
D, a contradiction. So this is an example in which the

obstruction in H2(OX0) to lifting L0 is nonzero (6.4).
For another approach to the deformations of the quartic surface in P

3,
we use the theory of deformations of a scheme together with a line bundle
(Ex. 10.6).

Proposition 20.4. Let X be a nonsingular quartic surface in P
3 over a field

k of characteristic 0. Then for any nontrivial line bundle L on X, there is an
abstract deformation X ′ of X over the dual numbers to which L does not lift.

Proof. Recall (Ex. 10.6) that deformations of the pair (X,L) are given by
H1(X,PL) and that there is an exact sequence

· · · → H1(OX)→ H1(PL)→ H1(TX) δ→ H2(OX)→ · · · ,

where for any deformation τ ∈ H1(TX) of X, the obstruction to extending
L over that deformation of X is given by δ(τ) ∈ H2(OX). Furthermore, δ(τ)
is the cup product of τ with the cohomology class c(L) ∈ H1(Ω1

X) via the
pairing TX ⊗Ω1

X → OX .
Thus to prove the proposition, we must show that there is a τ ∈ H1(TX)

with δ(τ) �= 0. Since H2(OX) is one-dimensional, we need to show that the
map δ is nonzero. Since the canonical class of X is zero, this map δ is dual
to a map H0(OX) → H1(Ω1

X), which, because of how the exact sequence
0→ OX → PL → TX → 0 was defined, is none other than the map sending 1
to c(L), the cohomology class of L. Thus we need only show that c(L) is not
zero, and this is a consequence of the following lemma.
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Lemma 20.5. Let X be a nonsingular surface in P
3 over a field k of charac-

teristic 0. Let L be a nontrivial line bundle. Then c(L) ∈ H1(X,Ω1
X) is not

zero.

Proof. The formation of the cohomology class is compatible with intersection
theory on the surface [57, V, Ex. 1.8], in the sense that for any two divisor
classes D, E on X, the cup product of the cohomology classes c(OX(D)) and
c(OX(E)) from H1(Ω1

X) × H1(Ω1
X) to H2(ωX) = k is just (D.E) · 1 in the

field, where (D.E) is the intersection number.
Let H be an ample divisor on X. If D is any divisor of degree �= 0, then

(H.D) �= 0, and since char k = 0, we obtain c(OX(D)) �= 0 in H1(Ω1
X). On the

other hand, if (H.D) = 0, but D �= 0, then by the Hodge index theorem [57,
V, 1.9], it follows that D2 < 0, since PicX is discrete and has no torsion.
Then c(OX(D)) ∪ c(OX(D)) = (D2) · 1 �= 0, so again c(OX(D)) �= 0.

Taking the same ideas a step farther, we can prove the theorem of Noether
for quartic surfaces.

Theorem 20.6 (Noether). A very general quartic surface X in P
3 over an

uncountable algebraically closed field k of characteristic 0 contains only curves
that are complete intersections with other surfaces in P

3. (Here very general
means that we must avoid a countable union of proper closed subsets of the
parameter space.)

Proof. Let H denote the hyperplane class on X. Since X is projectively
normal, any curve C linearly equivalent to mH for some m is a complete
intersection. So if X contains a curve C that is not a complete intersection,
then C and H are linearly independent in PicX. (Here we use the fact that
PicX/ZH is torsion-free (Ex. 20.7).)

The first step is to show that there is a deformation of X in P
3 over the

dual numbers to which C does not lift. Let d = degC and consider the divisor
D = 4C − dH. Then D.H = 0, and D �= 0. Let L = OX(D), and let X ′

be a deformation of X as an abstract surface to which L does not lift (20.4).
If τ ∈ H1(TX) corresponds to X ′, then as in (20.4), δ(τ) = τ ∪ c(L) �= 0. Now
on the quartic surface, TX

∼= Ω1
X and ωX

∼= OX , so the pairing H1(TX) ×
H1(Ω1

X)→ H2(OX) is the same as the pairingH1(ΩX)×H1(ΩX)→ H2(ωX),
which is compatible with intersection pairing. Since c(L) ∪ c(OX(1)) = 0, we
can choose τ in such a way that δ(τ) �= 0 and τ ∪ c(OX(H)) = 0, so that
OX(H) = OX(1) lifts to X ′. Using this lifting we can embed X ′ in P

3, as in
(20.3.2). So we have found a deformation X ′ of X as a closed subscheme of
P

3 to which L does not lift. It follows that the curve C does not lift to X ′, for
if it did, the corresponding invertible sheaf OX(C) would also lift (Ex. 6.7)
and then so would L ∼= OX(4C)⊗OX(−d).

Let d, g be the degree and genus of C. The next step is to consider the
Hilbert-flag scheme H{C,X} of curves of degree d and genus g in quartic sur-
faces X in P

3. By the lemma (20.7) below, there are no complete intersection
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curves on X with this degree and genus. We will show that the forgetful mor-
phism from H{C,X} to the Hilbert scheme H{X} ∼= P

34 of quartic surfaces
is not surjective. Suppose to the contrary. Then some reduced irreducible
component Z ⊆ H{C,X} would map surjectively to H{X}. Let U be an
open dense subset of Z that is nonsingular, and let f : U → H{X} be the
induced map. By the theorem of generic smoothness [57, III, 10.7] there is an
open subset V ⊆ H{X} such that f : f−1(V ) → V is smooth. Take a pair
C ⊆ X corresponding to a point u ∈ f−1(V ), and let v be its image in V .
We apply the earlier argument to C and X. The deformation X ′ to which C
does not lift gives a map of SpecD → V with image centered at v, where D is
the dual numbers. By the infinitesimal lifting property of smooth morphisms
(Ex. 4.7), this lifts to a map of SpecD → f−1(v) at the point u. Pulling back
the universal family over H{C,X} we get a lifting of C to X ′, a contradiction.
We conclude that the image of H{C,X} in H{X}, that is, the set of quartic
surfaces containing some curve of degree d and genus g, is a proper closed
subset of H{X}.

Now, as the pair (d, g) ranges over all possible pairs of integers different
from those of a complete intersection on a quartic surface, we find that the set
of quartic surfaces in P

3 that contain some non-complete-intersection curve is
a countable union of proper closed subsets of the parameter space P

34. Over
the uncountable field k, a very general point of P

34 will therefore correspond
to a nonsingular quartic surface containing only complete intersection curves.

Lemma 20.7. Let X be a nonsingular surface in P
3 (of any degree), and let

C be an effective Cartier divisor on X having the same degree and genus as a
complete intersection of X with another surface. Then C itself is a complete
intersection of X with another surface.

Proof. Let H be a hyperplane class, and let D be a complete intersection
curve having the same degree and genus as C. Since C and D have the same
degree, C.H = D.H. Furthermore, since D ∼ mH for some H, this implies
C.D = D2. Also the canonical class KX is a multiple of H, so C.KX = D.KX .
Now since C and D have the same genus, using the adjunction formula 2gC −
2 = C.(C + KX), and ditto for D, we find that C2 = D2. Now consider the
divisor C−D. Note that (C−D).H = 0 and (C−D)2 = C2−2C.D+D2 = 0.
Hence by the Hodge index theorem [57, V, 1.9], we conclude that C − D is
numerically equivalent to zero. But since PicX is discrete and has no torsion,
it follows that C is linearly equivalent to D. Then since X is projectively
normal, C is the intersection of X with some other surface.

References for this section. What we call Noether’s theorem appears in
his treatise on space curves [125, §11, p. 58] as a fact mentioned in a subordi-
nate clause that he uses in his study of the dimensions of families of algebraic
space curves. It appears again [ibid, p. 64] with reference to its earlier men-
tion, but in neither case is there any justification or hint of a proof. Fano
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[30] says “it has been observed in the researches of M. Noether, based essen-
tially on a computation of constants, that a general surface of any degree ≥ 4
contains no other curves than complete intersections.” Lefschetz [94] claims
to give “the first complete proof of a theorem first considered by Noether.”
Later [ibid, p. 359] he says, “For ordinary space this theorem has been stated
and proved many years ago by Noether, but his proof, based on enumeration
of constants, has long been considered unsatisfactory.” The German encyclo-
pedia article [143, p. 1329] mentions this result, saying that “the proof of
M. Noether is based on counting constants. A rigorous proof has been given
by S. Lefschetz.” So we see that what Noether simply mentioned as a fact,
with the passage of time is attributed to him as a theorem with a proof.

The only classical proof that I could find is in a paper of Rohn [142].
He refers to Noether and Halphen in his introduction, but does not refer to
Noether on pp. 641, 642 when he states the theorem. His proof by counting
constants starts out well enough, along the lines of (Ex. 20.6), but gets more
difficult to justify as he deals with families of space curves of larger degree.

Lefschetz’s proof [94], [95] uses topological methods for surfaces defined
over C. He considers a pencil of general nonsingular surfaces containing special
fibers with nodes as singularities (a “Lefschetz pencil”) and studies the mono-
dromy of cycles for a small loop in the parameter space around a singular
fiber. Deligne [18] brings Lefschetz’s proof up to date by reinterpreting it in
l-adic cohomology over an arbitrary base field. He proves the theorem in all
characteristics, where now “general” means a surface defined by an equation
with indeterminate coefficients. Besides these, there have been many papers
giving new proofs and refinements of the theorem [34], [108], [16], [22], [43],
[40], [41], [168], [169], [170], [98], [28], [29], [75], [107]. The proof given here is
my own, though I am sure all the ideas have been used before.

Exercises.

20.1. For d ≤ 5 we have seen that the abstract deformations of a nonsingular
surface X of degree d in P

3 are unobstructed. Show that this holds also for d ≥ 6,
even though H2(TX) �= 0. Do this by lifting an abstract deformation to an embedded
deformation and then deforming the embedded deformation.

20.2. Make a similar analysis of nonsingular curves in P
2, comparing their embed-

ded deformations to their abstract deformations. Show that for d ≤ 4, every abstract
deformation of the curve lifts to an embedded deformation, but that for d ≥ 5 this
no longer holds.

20.3. In the proof of (20.6), to show that the map of schemes H{C,X} to H{X}
is not surjective, it is not sufficient to say merely that the induced map on Zariski
tangent spaces is not surjective.

(a) Give some examples of surjective morphisms of schemes f : X → Y where the
induced map on tangent spaces is not surjective.

(b) Show, however, that if f is smooth and surjective, then the induced map on
tangent spaces is surjective.
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20.4. Extend the proof of Noether’s theorem (20.6) to surfaces X of any degree
d ≥ 5 in P

3.

(a) Show that the problem reduces to the following: If δL : H1(TX) → H2(OX) is
the map coming from the exact sequence of the sheaf of principal parts of L, then
δL = 0 if L ∼= OX(1), while δL �= 0 for any line bundle L linearly independent
of OX(1) in PicX.

(b) By duality, remembering that KX = OX(d − 4), show that this is equiva-
lent to saying that multiplication by any polynomial f of degree d − 4 from
H1(Ω1

X) → H1(Ω1
X(d − 4)) kills c(OX(1)), but that for c(M), where M is lin-

early independent of L, there exists some f with f.c(M) �= 0.
(c) To prove (b), use the cohomology of the sequence

0 → OX(−d) → Ω1
P3 ⊗OX → Ω1

X → 0

and the same sequence twisted by d − 4, and note that c(OX(1)) comes from
c(OP3(1)), hence is in the image of H1(ΩP3 ⊗OX).

20.5. Use the method of proof of (20.6) to prove a result of Mori [110]: if there
exists a nonsingular quartic surface X0 containing a nonsingular curve C0 of degree
d and genus g, then there also exists a nonsingular quartic surface X1 containing
a nonsingular curve C1 of the same degree and genus, and with the property that
PicX1 is generated by C1 and H, the hyperplane class.

20.6. Quartic surfaces containing various curves.

(a) Show that the family of those quartic surfaces that contain a line has dimension
33 inside the parameter space P

34 of all quartic surfaces in P
3. Do this by counting

for each fixed line the quartic surfaces containing that line, and adding the
dimension of the family of lines in P

3.
(b) Make a similar argument for nonsingular, nonspecial, ACM curves of any degree

≤ 8 in P
3. In this case you need to take into account the dimension of the linear

system of those curves on a fixed quartic surface. In each case the family of
quartic surfaces containing curves of this type has dimension 33.

(c) For surfaces of degree d ≥ 5 in P
3, show that the codimension of the family of

surfaces containing lines in the family of all surfaces of degree d is d− 3.
(d) For surfaces of degree d ≥ 4 in P

3, the codimension of the family of surfaces
containing conics is 2d− 7.

20.7. If X is a complete intersection surface in P
n over a field k of characteristic

0, show that PicX/ZH has no torsion, where H is the hyperplane class. To do
this, follow Grothendieck’s proof of the fact that a complete intersection scheme
X of dimension ≥ 3 in P

n has PicX ∼= Z, generated by H [55, Ch IV, 3.1]. The
difference, in case X is a surface, is that H2(X, In/In+1) may no longer be zero.
But over a field k of characteristic zero it is a torsion-free abelian group. Use this
to show that any torsion class (mod H) would lift to P

n and so be equal to zero.

21. Algebraization of Formal Moduli

The question is, once we have a formal family of deformations of some object,
either a versal, a miniversal, or a universal family in the sense of this chapter,
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can we extend it to an actual family of deformations, defined over a scheme
of finite type over k? And this family, if it exists, does it inherit the good
properties of the formal family (versal, miniversal, universal)? What we are
asking, in effect, is, can we leverage our way from the formal family to a global
moduli space?

To fix the ideas, suppose that X0 is a given scheme over k and that we
have a versal family of deformations of X0. This means we have a complete
local k-algebra R,m with residue field k, and we have a compatible collection
of schemes X0 ⊆ X1 ⊆ X2 ⊆ · · · , where for each n, Xn is a deformation of
X0 over Rn = R/mn+1, with the versal property for arbitrary deformations
of X0 over Artin rings, as described in §15. The first step is to create a formal
scheme as limit of the schemes Xn.

Proposition 21.1. Let R,m be a complete local ring with residue field k, and
suppose we are given a formal family of deformations of X0 over R, that is,
for each n, schemes Xn flat and of finite type over Rn = R/mn+1 and maps
Xn → Xn+1 inducing isomorphisms Xn

∼→ Xn+1 ⊗Rn+1 Rn. Then there is a
noetherian formal scheme X , flat over Spf R, the formal spectrum of R, such
that for each n, Xn

∼= X ×R Rn.

Proof. We define X to be the locally ringed space formed by taking the
topological space X0, together with the sheaf of rings OX = lim←− OXn

[57, II,
9.2]. To show that X is a noetherian formal scheme, we must show that X has
an open cover Ui, such that on each Ui, the induced ringed space is obtained
as the formal completion of a scheme Ui along a closed subset Zi.

Let U be an open affine subset of X0, with U = SpecB0. Then for each
n the restriction of Xn to U will be SpecBn for a suitable ring Bn. Further-
more, the rings Bn form a surjective inverse system with lim←− Bn = B∞, and
H0(U,OX ) = B∞.

Take a polynomial ring A0 = k[x1, . . . , xn] together with a surjective map
A0 → B0. For each n, let An = Rn[x1, . . . , xn]. Lifting the images of xi we
get a surjective map An → Bn, with kernel In. Because of the flatness of Bn

over Rn, we find that the inverse system {In} is also surjective, and hence
[57, II, 9.1] the map of inverse limits lim←− An → B∞ is also surjective. Now
lim←− An is equal to R{x1, . . . , xn}, the convergent power series in x1, . . . , xn

over R, which is a noetherian ring, so B∞ is a noetherian ring also, complete
with respect to the mB∞-adic topology, and each Bn = B∞/mnB∞. Thus we
see that the ringed space (U,OX |U ) is just the formal completion of SpecB∞
along the closed subset U . Such open sets U coverX0, so by definition (X ,OX )
is a noetherian formal scheme.

Remark 21.1.1. If in addition we are given a collection of coherent sheaves
Fn on Xn (resp. locally free, resp. invertible), flat over Rn, and maps Fn

∼=
Fn+1 ⊗Rn+1 Rn, then F = lim←− Fn will be a coherent (resp. locally free, resp.
invertible) sheaf on X [57, II, 9.6].
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The next step, once we have a formal scheme X over Spf R, is to ask
whether there exists a scheme X, flat and of finite type over R, whose formal
completion along the closed fiber is X . In this case, following Artin, we say
that the formal scheme X is effective (in [57, II, 9.3.2] this property was called
algebraizable). This is not always possible (21.2.1), and in that case we can go
no further. However, there is a good case in which it is possible, namely when
X is projective, thanks to an existence theorem of Grothendieck.

Theorem 21.2 (Grothendieck). Let X be a formal scheme, proper over
Spf R, where R,m is a complete local ring, and suppose there exists an invert-
ible sheaf L on X such that L0 = L ⊗R k is ample on X0 = X ⊗R k. Then
there exists a scheme X over R, together with an ample line bundle L, such
that X = X̂ and L = L̂, taking completions along the closed fiber over R.
In particular, X is effective.

Proof. We refer to [48, III, 5.4.5] for the proof.

Example 21.2.1 (A noneffective formal deformation). This example
shows that in the theorem, it is not enough to assume X0 projective. It must
admit an ample invertible sheaf that lifts to the formal scheme X .

Let X0 be a nonsingular quartic surface in P
3 over a field of characteristic

zero. Then we have seen (20.4) that for any nonzero divisor D on X0, there is
some deformation of X, already over the dual numbers, to which L = OX(D)
does not lift. We know from (18.1) that there is a miniversal formal family
of deformations of X0 and hence a formal scheme X as in (21.1). However,
(20.4) shows that no ample line bundle on X0 lifts to X , and so (21.2) does
not apply.

I claim in this case that the formal family X is actually not effective. For
suppose there were a scheme X over SpecR with X̂ ∼= X . Then X would be
a family of smooth surfaces over R. Since H2(TX0) = 0 (20.2.2), there are no
obstructions to deforming X0, so R will be a power series ring. Thus the total
space X is a regular scheme. Take an open affine piece U that meets X0, and
take a hyperplane section Y ⊆ U that also meets X0. Then the closure Ȳ
of Y in X is a subscheme of codimension one. Since the local rings of X are
regular, Ȳ is a Cartier divisor, whose intersection withX0 is a nonzero effective
divisor. Then the corresponding invertible sheaf L lifts to X by construction,
a contradiction. Thus X is not effective.

Let us see how the theorem applies to our standard situations.

Example 21.2.2. In Situation A we start with a closed subscheme X0 ⊆ P
n
k .

The Hilbert functor of deformations of X0 as a closed subscheme of P
n is

pro-representable (17.1). Then by (21.1) we obtain a formal scheme X ⊆ P̂
n
R.

It is projective by construction, so (21.2) applies, and the formal family is
effective.
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Example 21.2.3. In Situation B we start with an invertible sheaf L0 on a
scheme X0. Assuming X0 projective and H0(OX0) = k, the local Picard func-
tor of deformations of L0 on X0 is pro-representable (17.2), so by (21.1.1) we
obtain an invertible sheaf L̂ on (X0×R)∧. We use the theorem of Grothendieck
[48, III, 5.1.4], which says that if X is a scheme, projective over a complete
local ring R, and if X̂ is the completion along the closed fiber, then the functor
F �→ F̂ is an equivalence of the category of coherent sheaves on X with the
category of coherent sheaves on X̂. In our case, this guarantees that there is
an invertible sheaf L on X0 × R whose completion is isomorphic to L̂. Thus
the formal family of invertible sheaves is effective.

Example 21.2.4. In Situation C we start with a projective scheme X0 and a
locally free sheaf E0 onX0. The local deformation functor then has a miniversal
family (19.1), which is universal if E0 is simple (19.2). For the same reason as
in the previous example, we conclude that the formal family is effective.

Example 21.2.5. In Situation D, suppose we start with an (abstract) pro-
jective scheme X0. Then the local deformation functor has a miniversal family
(18.1), which is universal if H0(X0, TX0) = 0 (18.3). Since X0 is projective,
there is an ample invertible sheaf L0 on X0. But in order to apply (21.2), we
must be able to extend L0 to an invertible sheaf L on the formal scheme X .
If H2(OX0) = 0, then by (6.4) there are no obstructions to deformations of
L0, and we obtain the desired L. In this case the formal family of deformations
of X0 is effective, as in the case of (21.2.1). This applies in particular to any
projective curve, since then there is no H2. If X0 is a nonsingular projective
surface, then H2(OX0) is dual to H0(KX0), whose dimension is the geometric
genus pg of X0. So for surfaces with pg = 0, the formal family of deformations
is effective. This applies in particular to rational, ruled, and Enriques sur-
faces. However, for other surfaces, such as K3 surfaces and abelian surfaces,
this method fails, and in fact the formal family of deformations is not effective,
as in the case of (21.2.1). This is a serious impediment to the construction
of moduli, and is the principal reason why one considers polarized varieties
instead of “bare” varieties with no polarization [119, Ch 5, §1].

Example 21.2.6. As a special case of the previous example, Artin [7, 5.5]
shows that the formal deformations of a surface of general type X0 are effec-
tive, using the fact that a sufficiently high multiple of the canonical bundle
defines a birational morphism to some P

n, and this map extends to infinit-
esimal deformations.

The third and most difficult step is to descend from a family over a com-
plete local ring R to a family defined over a scheme of finite type over k. More
specifically, we ask for a scheme S of finite type over k, a scheme X flat and
of finite type over S, and a point s0 ∈ S, such that the fiber of X over s0
is X0, and the formal completion of X along X0 is isomorphic to the formal
scheme X above. This problem was addressed in a series of deep papers by
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Michael Artin [4], [6], [7]. To explain his work in detail would carry us too far
afield, so we will merely describe his results briefly. His main result, stated in
the special case of deformations of a scheme X0 as above, is the following:

Theorem 21.3 ([4, 1.6, 1.7]). Let X0 be a projective scheme over k, and
assume that X0 admits an effective formal versal deformation X̄ over the
complete local ring R. Then X̄ is algebraizable in the following sense: there
exists a scheme S of finite type over k, a point s0 ∈ S, and a flat finite-
type family X over S, with fiber X0 over s0, such that R ∼= ÔS,s0 and X̄
is isomorphic to X ×S SpecR. Furthermore, the triple (X,S, s0) is unique
locally around s0 in the étale topology, meaning that if (X ′, S′, s′0) is another
such, then there exist an S′′ with a point s′′0 and an étale morphism S′′ → S,
S′′ → S′ sending s′′0 to s0, s′0 respectively such that X ×S S

′′ ∼= X ′ ×S′ S′′.

Note that the resulting familyX/S is unique only to within étale coverings,
so we do not get an actual moduli space by this method. However, as so
often happens in mathematics, when you don’t get what you want, make a
definition! In the absence of automorphisms, the notion of algebraic space
[3], [85] works well; in the general case one needs the notion of stack [21].
In both cases, the definition is crafted in such a way that having these algebraic
families up to local étale isomorphism is enough to determine the structure.
In this connection, see the discussion of modular families in §§26, 27. Much
of the language of schemes carries over to the categories of algebraic spaces
and of stacks, so that one can think of these notions as generalizations of the
concept of scheme and can work with moduli problems in this more general
context. The question whether the moduli space is actually a scheme can be
deferred until later, or even ignored. The only drawback of this approach is the
considerable technical baggage necessary to work in these larger categories,
and for this reason we have avoided them in this book (but see (27.7.1) for
some comments on stacks).

Example 21.3.1. If X0 is a projective curve, the miniversal formal family X̄
of local deformations is effective (21.2.5), so by the theorem it is algebraizable.
In the case of nonsingular curves of genus g ≥ 2, we will find another proof of
this result using a modular family (27.2).

Remark 21.3.2. For another example illustrating the ideas of this section,
consider the problem, given a flat family X/T of schemes and an invertible
sheaf L0 on a special fiber X0, of lifting L0 to an invertible sheaf on the
whole family. Of course if dimX0 ≥ 2, there may be obstructions to lifting L0

(20.3.2). But if dimX0 = 1, then H2(OX0) = 0 and there are no obstructions
to infinitesimal liftings of L0 (6.4). Thus we obtain a sheaf L̂ on the formal
completion ofX alongX0, and as in (21.2.3) we obtain an invertible sheaf L̄ on
the schemeX×OT,0Spec ÔT,0. By analogy with Artin’s theorem (21.3), we may
then expect to find an L on X after some étale base extension T ′ → T . In fact,
this is true, and we can give a direct proof without using Artin approximation
(Ex. 21.4).
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While the above discussion concerned projective varieties, another of
Artin’s approximation results is purely local: it tells us that a formal iso-
morphism can be approximated by étale morphisms.

Theorem 21.4 ([5, 2.6]). Let S be a scheme of finite type over a field k, let
X1 and X2 be schemes of finite type over S, let xi ∈ Xi be points, and suppose
that there is an isomorphism of completions of the local rings ÔX1,x1

∼= ÔX2,x2

over S. Then X1 and X2 are locally isomorphic in the étale topology, that is,
there is another scheme X ′ of finite type over S together with a point x′ ∈ X ′,
and there are étale morphisms X ′ → X1 and X ′ → X2 sending x′ to x1 and
x2, respectively, and inducing isomorphisms on the residue fields at x′, x1, x2.

References for this section. Grothendieck’s study of formal schemes and
comparison with algebraic schemes first appeared in [44] and was later incor-
porated into [48, III, §5]. For a recent survey of this work, see [74]. Artin’s
work on algebraization occurs in a series of papers [3], [4], [5], [6], [7]. For
an analogous situation comparing algebraic varieties over C with complex
analytic spaces, see [153].

Exercises.

21.1. Let X0 be a nonsingular surface of degree d ≥ 5 in P
3.

(a) Show that the functor of local deformation of X0 is pro-representable.
(b) Show that the formal deformation space X of X0 is effective.
(c) Show that another surface X1 ⊆ P

3 is isomorphic to X0 as an abstract surface
if and only if X1 is obtained from X0 by an automorphism of P

3. Conclude that
the subset of the Hilbert scheme H consisting of surfaces isomorphic to X0 is a
smooth subvariety V of dimension 15.

(d) Note that H is isomorphic to P
N with N =

(
d+3
3

)
− 1. Let S ⊆ H be a linear

space of dimensionN−15 passing through the point x0 ∈ H corresponding toX0,
and transversal to the subvariety V at x0. Show that S with the induced family
X is an algebraic family whose formal completion along the fiber above x0 is
isomorphic to X . Thus (X,S, x0) satisfies the conclusion of Artin’s algebraization
theorem (21.3).

21.2. In the situation of (21.2), show that the scheme X over R is unique up to
isomorphism. Hint: Use the theorem of Grothendieck mentioned in (21.2.3). Apply
this to the graph of the isomorphism X̂1

∼= X̂2 for two choices X1, X2, and deduce
an isomorphism of X1 and X2.

21.3. Using (Ex. 10.7), adapt the argument of (21.2.1) to show that if X0 is
an abelian surface, the functor of local deformations is unobstructed and pro-
representable, giving rise to a formal scheme X over a power series ring R of
dimension 4. However, the formal family X is not effective.

21.4. Let X/T be a flat family of reduced projective curves over a nonsingular
curve T . Let 0 ∈ T be a point, and suppose we are given an invertible sheaf L0 on
the fiber X0 over 0. Show that there is an étale morphism T ′ → T whose image
contains 0 and there is an invertible sheaf L′ on X ′ = X ×T T ′ restricting to L0

on X0.
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(a) Since X/T is projective, it has a relatively ample sheaf. Tensoring by this one,
we reduce to the case that L0 is very ample on X0, hence can be represented by
a divisor D0 consisting of distinct nonsingular points of X0.

(b) If P ∈ X0 is a nonsingular point, the total space X is a nonsingular surface in a
neighborhood of P , so we can find a curve C on X intersecting X0 transversally
at P (and at other points). Replacing C by an open neighborhood of P in C,
we may assume that the projection map C → T is étale. Then making the base
extension C → T , we obtain a section of X ×T C/C that meets X0 in P .

(c) Applying (b) successively to each of the points of D0, we obtain an étale map
T ′ → T having sections corresponding to all the points of D0. Their union is a
divisor on X ′ = X ×T T ′ that defines an invertible sheaf L′ on X ′ restricting to
L0 on X0.

21.5. Again let X/T be a flat family of reduced projective curves, let 0 ∈ T be a
point, and suppose we are given a projective embedding X0 ↪→ P

n with the property
that h1(OX0(1)) = 0. Show that there is an étale map T ′ → T whose image contains
0 and there is a closed immersion of X ′ = X ×T T ′ ↪→ P

n
T ′ restricting to the given

embedding of X0.

(a) Use the previous exercise to extend OX0(1) to an invertible sheaf L′ on X ′ for
a suitable étale base extension T ′ → T .

(b) Use the hypothesis h1(OX0(1)) = 0 to show that the sections of L0 = OX(1)
defining the embedding lift to sections of L (after shrinking T ′ if necessary), and
that these define a morphism of X ′ to P

n
T ′ , which will be a closed immersion

after possibly shrinking T ′ a little more.
(c) Give an example to show that the conclusion of this problem is false without the

hypothesis h1(OX0(1)) = 0. For example, let X0 be a plane quintic curve, and
let X/T be a family of general curves of genus 6 having X0 as a limit.

22. Lifting from Characteristic p to Characteristic 0

If we have a scheme X flat over SpecR, where R is a ring of characteristic
zero, but with residue fields of finite characteristic (for example R could be
the ring of integers in an algebraic number field or the ring of Witt vectors
over a field of characteristic p), then the generic fiber Xη of X over R will be
a scheme over a field of characteristic zero, while a special fiber X0 will be a
scheme over a field of characteristic p > 0. In this case we can think of X0

as a specialization of Xη. The lifting problem is the reverse question: Given a
scheme X0 over a field k of characteristic p > 0, does there exist a flat family
X over an integral domain R whose special fiber is X0 and whose general fiber
is a scheme over a field of characteristic zero?

To fix the ideas, let us suppose that X0 is a nonsingular projective variety
over a perfect field k of characteristic p > 0. Let us fix a complete discrete
valuation ring (R,m) of characteristic 0 with residue field k. Such a ring always
exists, for example the ring of Witt vectors over k. Then we ask whether there
is a scheme X, flat over R, with closed fiber X0.
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For each n ≥ 1, let Rn = R/mn+1. Then we have exact sequences

0→ mn/mn+1 → Rn → Rn−1 → 0

and we can use our study of infinitesimal liftings to try to lift X0 successively
to a scheme Xn flat over Rn. Note that in contrast to the equicharacteristic
situation of a local ring R containing its residue field k, there is no “trivial”
deformation of X0: already the step from X0 to X1 may be obstructed. But we
know (10.3) that the obstructions to lifting at each step lie inH2(X0, TX0), and
when an extension exists, the set of all such is a torsor under H1(X0, TX0).
Suppose we can find a family of liftings Xn flat over Rn for each n, with
Xn⊗Rn−1 = Xn−1. Then by (21.1) the limit X = lim←− Xn will be a noetherian
formal scheme, flat over Spf R, and restricting to Xn over each Rn.

The next problem is that while X , as a noetherian formal scheme, is locally
isomorphic to the completion of a (usual) scheme along a closed subset, it may
not be globally so, in other words, it may not be effective (in the sense of §21).
In general, the effectivity is a difficult question, but we can deal with it in the
projective case using the theorem of Grothendieck (21.2).

Putting these results together, we can prove the following lifting theorem.

Theorem 22.1. Let X0 be a nonsingular projective variety over a perfect field
k of characteristic p > 0. Assume that H2(X0,OX0) = 0 and H2(X0, TX0) = 0.
Let (R,m) be a complete discrete valuation ring with residue field k. Then
X0 can be lifted to a scheme X, flat over R, with closed fiber isomorphic
to X0.

Proof. Since H2(X0, TX0) = 0, the obstructions to infinitesimal lifting are
zero, so we obtain a compatible sequence of liftings Xn flat over Rn. Their
limit gives a noetherian formal scheme X by (21.1). Since X0 is assumed to
be projective, it has an ample invertible sheaf L0. The obstruction to lifting
an invertible sheaf lies in H2(X0,OX0). Since this is zero, we may lift L0 to a
compatible sequence of invertible sheaves Ln on each Xn. Then L = lim←− Ln is
an invertible sheaf on X (21.1.1) restricting to L0 on X0. Now we use (21.2)
to conclude that X is effective, hence comes from a scheme X flat over R with
closed fiber X0.

Corollary 22.2. Any nonsingular projective curve over a perfect field k0 of
characteristic p > 0 is liftable to characteristic zero.

We can apply the same techniques to the embedded lifting problem.

Theorem 22.3. Let X0 be a closed subscheme of P
r
k0

, with k0 a perfect field of
characteristic p. Assume that X0 is locally unobstructed (e.g., X0 is a locally
complete intersection (9.2), or X0 is locally Cohen–Macaulay of codimension
2 (8.5)). Assume also that H1(X0,NX0) = 0. Let R be a complete discrete
valuation ring with residue field k. Then X0 lifts to R, as a subscheme of P

r,
i.e., there exists a closed subscheme X of P

r
R, flat over R, with X×R k = X0.
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Proof. The method is already contained in the proof of the previous theorem.
Because of H1(X0,N0) = 0, one can lift X0 stepwise to a sequence of closed
subschemes Xn of P

r, flat over Rn. The limit of these is a projective formal
subscheme of P̂

r
R, which is effective by (21.2).

Remark 22.3.1. Without assuming H1(N ) = 0, it seems to be an open
question whether any nonsingular curve in P

3
k (or any other P

r
k) lifts to char-

acteristic zero as an embedded curve (cf. [26]).

Remark 22.3.2. Using (22.3) we can give a different proof of (22.1), by con-
verting it to a problem of embedded deformations. Under the hypotheses of
(22.1), take a projective embedding of X0. Replacing this by a d-uple embed-
ding, if necessary, we may assume that H1(X0,OX0(1)) = 0. Combined with
the hypotheses of (22.1), using the exact sequence of the normal bundle and
the Euler sequence on projective space, this implies that H1(X0,NX0) = 0.
Therefore by (22.3), X0 lifts as an embedded scheme, and a fortiori as an
abstract scheme.

In theorems (22.1) and (22.3) above, the problem of lifting from charac-
teristic p to characteristic 0 is solved in the strong sense, namely, given the
object X0 over k and the valuation ring R with residue field k, the lifting is
possible over that ring R. One can also ask the weak lifting problem: given
X0 over k, does there exist a local integral domain R of characteristic 0 and
residue field k0 over which X0 lifts to an X flat over R? Oort has given an
example [130] of a curve together with an automorphism of that curve that is
not liftable over the Witt vectors, but is liftable over a ramified extension of
the Witt vectors. Thus the strong and the weak lifting problems are in general
not equivalent. Next we will give Serre’s example that even the weak lifting
problem is not always possible for nonsingular projective varieties.

Theorem 22.4 (Serre). Over an algebraically closed field k of characteris-
tic p ≥ 5, there is a nonsingular projective 3-fold Z that cannot be lifted to
characteristic 0, even in the weak sense.

Proof. Let k be algebraically closed of characteristic p ≥ 5. Let r ≥ 5, and
let G = (Z/p)r. Then G is a finite abelian group, and by choosing elements
e1, . . . , er ∈ k that are linearly independent over Fp, we can find an additive
subgroup G ⊆ k+ isomorphic to the abstract group G.

Now let N be the 5× 5 matrix (aij)i,j=0,...,4 defined by ai,i+1 = 1 for i =
0, 1, 2, 3 and aij = 0 otherwise. Then N is a nilpotent matrix with N5 = 0. For
each t ∈ G ⊆ k+, consider the matrix etN = I+tN+ 1

2 t
2N2+ 1

6 t
3N3+ 1

24 t
4N4

in SL(5, k). The fractions are well-defined because we assumed characteristic
k = p ≥ 5. This gives a homomorphism of the additive group G to the
multiplicative group SL(5, k), and hence an action of G on P

4
k. It is easy to

check that the only fixed point of this action is P0 = (1, 0, 0, 0, 0).
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Now P
4/G is a (singular) projective variety. Taking a suitable projective

embedding we can find a smooth 3-dimensional hyperplane section Z. This is
the required example.

To prove that Z is not liftable, we proceed as follows. First of all, let
Y ⊆ P

4 be the inverse image of Z under the quotient map P
4 → P

4/G. Then
Y is a hypersurface, stable under the action of G, and Y/G ∼= Z. Since Z is
smooth, it does not contain the image of the fixed point P0, so G acts freely
on Y , and the map Y → Z makes Y into an étale Galois cover of Z with
group G.

Now suppose there is a local integral domain R of characteristic 0 with
residue field k, and a scheme Z ′, flat over R, with Z ′×R k = Z. First we show
that the étale cover Y lifts.

Proposition 22.5. Let Z be a scheme over a field k, let Y → Z be a finite
étale cover, let R be a complete local ring with residue field k, and suppose
there exists a scheme Z ′, flat over R, with Z ′×R k = Z. Then there is a finite
étale cover Y ′ → Z ′ (necessarily flat over R) with Y ′ ×R k = Y .

Proof. By definition Y → Z is a finite, affine, smooth morphism of relative
dimension zero. As we showed in (4.11), for any smooth ring extension A→ B,
the functors T i(B/A,M) are 0 for i = 1, 2 and for all M . If A → B is étale,
then we also have ΩB/A = 0 and so T 0(B/A,M) = 0.

Thus, for a finite étale morphism, over each open affine subset of the base,
the obstructions in T 2 to lifting vanish. A lifting exists, and because of T 1 = 0,
it is unique. Thus the liftings patch together, and we get a unique lifting of
the entire étale cover over each Rn = R/mn+1. In the limit, these give an étale
cover of the formal scheme Ẑ ′. Since the morphism Y → Z is projective, the
effectivity theorem (21.2) gives the cover Y ′ of Z ′ desired.

Proof of (22.4), continued. Using (22.5), we obtain a finite étale cover
Y ′ of Z ′ that reduces to Y over Z. Because of the uniqueness in each step
of lifting the étale cover, the group action G extends to Y ′ and makes Y ′ a
Galois covering of Z ′ with group G.

Next, since Y is a hypersurface in P
4 we have Hi(Y,OY ) = 0 for i = 1, 2.

Now H2(Y,OY ) contains the obstructions to lifting an invertible sheaf, and
H1(Y,OY ) tells the number of ways to lift an invertible sheaf. Since both
of these are zero, the invertible sheaf L = OY (1) on Y lifts uniquely to an
invertible sheaf L′ on Y ′. Furthermore, since H1(Y,OY (1)) = 0, the sections
of H0(OY (1)) defining the projective embedding also lift, and we find that
H0(L′) is a free R-module of rank 5.

Since the group acts on P
4
k sending Y to itself, G also acts on

H0(Y,OY (1)) = k5, and this action also lifts to H0(Y ′,L′). Let K be the
quotient field of R. Then we get an embedding of Y ′

K in P
4
K , and the group

action G extends to an action on P
4
K . In other words, we get a homomorphism

ϕ : G→ PGL(5,K) compatible with the original action on P
4
k. In particular,
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ϕ is injective. Thus PGL(5,K) contains a subgroup isomorphic to G, which
is impossible as long as the rank of G is r ≥ 5.

Hence Z cannot be lifted, as was to be shown.

References and further results. As a general reference for this section,
see §8.5 of Illusie’s article [74]. Theorems (21.2) and (22.1) and Corollary (22.2)
first appeared in Grothendieck’s Bourbaki Seminar [44] of May 1959. There he
also raised the problem of liftability of smooth projective varieties, which was
answered by Serre’s example (22.4), in 1961 [154]. Mumford modified Serre’s
method to give an example of a nonliftable surface [74, 8.6.7].

Since then, many lifting problems have been studied. The two articles of
Oort [129], [130] are extremely useful. He shows that finite commutative group
schemes can be lifted [120], but gives an example of a noncommutative finite
group scheme that cannot be lifted (as a group scheme).

Mumford [116] showed that one can lift any principally polarized abelian
variety (as an abelian variety).

Deligne [19] showed that anyK3 surface can be lifted. This is an interesting
case, because the lifting of the abstract surface to a formal scheme may not
be effective: the ample invertible sheaf need not lift. It requires some extra
subtlety to show that there is an effective lifting. This is analogous to the
complex analytic theory, where the deformation space, as complex manifolds,
has dimension 20, but the algebraic K3 surfaces form only 19-dimensional
subfamilies. This lifting result has been sharpened by Ogus [127, 2.3].

Several authors have studied the problem of lifting a curve along with
some of its automorphisms. One cannot expect to lift a curve with its entire
group of automorphisms, because the order of that group in characteristic
p > 0 can exceed 84(g − 1), which is impossible in characteristic 0 [57, IV,
Ex. 2.5]. However, one can lift a curve C together with a cyclic group H of
automorphisms, provided that p2 does not divide the order of H.

Raynaud [140] has given examples of surfaces, the “false ruled surfaces,”
that cannot be lifted, and W. E. Lang [89] has generalized these.

Hirokado [68] and Schröer [149] have given examples of nonliftable Calabi–
Yau threefolds, and Ekedahl [25] has shown that these examples have all their
deformations limited to characteristic p. In particular, they cannot be lifted
even to the Witt vectors mod p2.

Vakil [164] shows that there are smooth varieties of each dimension ≥ 2
that cannot be lifted in an arbitrarily complicated way, e.g., liftable mod p5

but not mod p6.
It seems to be unknown whether there are nonliftable singular curves or

nonliftable zero-schemes.
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Global Questions

In this chapter we apply the methods of infinitesimal and formal deforma-
tions from Chapters 1, 2, and 3 to global questions. The foremost question in
every situation is whether there exists a global “moduli space” parametrizing
isomorphism classes of the objects in question. To make this question precise,
we introduce the functorial language in Section 23, we define the notions of
coarse moduli space and fine moduli space, and mention various properties of
a functor that help determine whether it may be representable. The “easy”
cases—that is, easy to state, though the proofs are not easy—are the cases
of closed subschemes and invertible sheaves, Situations A and B, where the
functor is representable respectively by the Hilbert scheme and the Picard
scheme (Section 24).

Our first example of a coarse moduli space in Situation D is the one-point
moduli space of curves of genus 0 (Section 25). The detailed study of families
of curves of genus 0 gives a good illustration, in a case in which everything
can be made explicit, of the functorial language introduced in Section 23. For
curves of genus 1, we show in Section 26 that the j-line is a coarse moduli
space and study the structure of families of elliptic curves.

For curves of genus g ≥ 2, one knows [119] that there is a coarse moduli
space. We do not prove this but instead in Section 27 develop Mumford’s
concept of a “modular family,” which is a precursor of the theory of stacks.

In Section 28 we discuss the problem of moduli of vector bundles, Situa-
tion C, and explain the importance of simple and stable vector bundles. A final
Section 29 discusses the problem of smoothing singularities, an interesting
interaction between local deformation theory and existence of global families.
In particular, we introduce the notion of a formally smoothable scheme, which
has infinitesimal deformations tending toward a smooth scheme.

R. Hartshorne, Deformation Theory, Graduate Texts in Mathematics 257, 149
DOI 10.1007/978-1-4419-1596-2 5, c© Robin Hartshorne 2010
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23. Introduction to Moduli Questions

What is a variety of moduli or a moduli scheme? In this section we will
consider the general question and make some definitions. Then in subsequent
sections we will give some examples to illustrate the various issues that often
arise in dealing with moduli questions.

To fix the ideas, let us work over an algebraically closed base field k (though
everything that follows can be generalized to work over a fixed base scheme).
Suppose we have identified a certain class of objects M over k that we wish
to classify. You can think of closed subschemes with fixed Hilbert polynomial
of P

n
k , or curves of genus g over k, or vector bundles of given rank and Chern

classes on a fixed scheme X over k, and so on. We will deal with specific cases
later. But for the moment, let us just say we have focused our attention on a
set of objects M, and we have given a rule for saying when two of them are
the same (usually isomorphism). We wish to classify the objects of M.

The first step is to list the possible elements of M up to isomorphism.
This determines M as a set. To go further, we wish to put a structure of
algebraic variety or scheme on the setM that should be natural in some sense.
So we look for a scheme M of finite type over k whose closed points are in
one-to-one correspondence with the elements of the setM and whose scheme
structure reflects the possible variations of elements in M: how they behave
in families.

To make this precise, we must say what we mean by a family of elements
inM. For a parameter scheme S of finite type over k, this will usually mean a
scheme X, flat over S, with an extra structure whose fibers at closed points are
elements ofM. Then for the scheme M to be a variety of moduli for the class
M, we require that for every family X/S there be a morphism f : S → M
such that for each closed point s ∈ S, the image f(s) ∈M corresponds to the
isomorphism class of the fiber Xs inM.

But that is not enough. We want the assignment of the morphism f :
S → M to the family X/S to be functorial. To explain what this means, for
every scheme S/k, let F(S) be the set of all families X/S of elements of M
parametrized by S. If S′ → S is a morphism, then by base extension, a family
X/S will give rise to a family X ′/S′ (note here that we should define our
notion of family in each situation so that it does extend by base extension).
Thus the morphism S′ → S gives rise to a map of sets F(S)→ F(S′). In this
way F becomes a contravariant functor from (Sch /k) to (Sets). (In the above
discussion we spoke only of schemes S of finite type over k, but to make
the functorial language work well, we should extend the definition of F to
include all schemes over k.) So what we are asking for is a morphism of
functors ϕ : F → Hom(·,M) that for each scheme S/k and each element
X/S ∈ F(S) assigns the associated morphism fX/S : S → M . If we denote
the functor Hom(·,M) from (Sch /k) to (Sets) by hM , then we can say that
ϕ is a morphism of functors ϕ : F → hM .
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What we have said so far still does not determine the scheme structure on
M uniquely. To make M unique, it should be the “largest possible” with the
above properties. So we require that if N is any other scheme, and ψ : F → hN

a morphism of functors, then there should exist a unique morphism e : M → N
such that ψ = he ◦ ϕ, where he : hM → hN is the induced map on associated
functors.

Summing up, we come to the following definition.

Definition. We consider a certain class M of objects over an algebraically
closed field k. Suppose we have defined what we mean by families of elements
of M parametrized by a scheme S, and we have said when two families are
the same. We consider the functor F : (Sch /k) → (Sets) that to each S/k
assigns the set F(S) of equivalence classes of families of elements of M over
S. Then we define a coarse moduli scheme for the family M (or the functor
F) to be a scheme M/k together with a morphism of functors ϕ : F → hM

such that

(a) the induced map F(k)→ hM (k) is bijective, and
(b)ϕ is universal in the sense that if ψ : F → hN is any other morphism from
F to a functor of the form hN , then there is a unique morphism of schemes
e : M → N such that ψ = he ◦ ϕ.

Remark 23.0.1. The condition (a) tells us that the elements of M, consi-
dered as trivial families over k, are in one-to-one correspondence with the
closed points of M , which are just morphisms of Spec k into M . The fact
that ϕ is a morphism of functors tells us that for any family X/S ∈ F(S), its
image ϕX ∈ Hom(S,M) has the property that for each closed point s ∈ S, the
point ϕX(s) ∈ M corresponds to the equivalence class of the fiber Xs in M.
Just consider the functoriality for a morphism of Spec k to S sending the point
to s. The condition (b) implies that M is unique, up to unique isomorphism,
if it exists.

Definition. If M is a coarse moduli scheme for the moduli problem M,
we define a tautological family for M to be a family X/M such that for each
closed point m ∈ M , the fiber Xm is the element of M corresponding to m
by the bijection F(k)→ hM (k) above.

Example 23.0.2. Let M be the set of nonsingular projective curves of
genus 0 over k, up to isomorphism. ThenM has a single element, namely P

1.
We will see (25.1) that M = Spec k is a coarse moduli space, and the trivial
family P

1/k becomes a tautological family.

Example 23.0.3. On the other hand, we will see (26.3.1) that the j-line is
a coarse moduli scheme for curves of genus 1, but that it has no tautological
family.
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Remark 23.0.4. A coarse moduli scheme may fail to exist. A jump pheno-
menon for a moduli problemM is a family X/S of elements ofM, where S is
an integral scheme of dimension at least one, of finite type over k, such that
all fibers Xs for s ∈ S are isomorphic except for one Xs0 that is different.
In this case there can be no coarse moduli space, because it is not possible to
have a morphism of S to a scheme M sending s0 to one point and all other
closed points of S to another single point.

Here are some examples of moduli problems with jump phenomena:

(a) Vector bundles of rank 2 and degree 0 over P
1. We have seen (19.3.2) that

there is a family parametrized by S = Spec k[t] whose fiber at t = 0 is
O(−1)⊕O(1), but whose fiber for every t �= 0 is O ⊕O.

(b) Plane curve singularities up to analytic isomorphism. For example there
are families whose fiber is a cusp at one point, but is a node at all other
points (14.2.2).

(c) Integral projective curves of arithmetic genus one. There are families
(26.6.7) where the special curve has a cusp, but all the other fibers are
isomorphic nonsingular curves.

Definition. If the functor F associated to a moduli problemM is isomorphic
to a functor of the form hM = Hom(·,M), then we say that F is a representable
functor, or that M represents the functor F , and we call M a fine moduli space
for M (or for F).

Remark 23.0.5. If F → hM is an isomorphism, then in particular F(M)→
hM (M) is bijective, and there is a family Xu/M corresponding to the identity
map 1M ∈ Hom(M,M). We call Xu the universal family associated with the
fine moduli space M . It has the additional property that for any family X/S,
there is a unique morphism S → M such that the family X/S is obtained
by base extension from the universal family Xu/M . Conversely, if there is a
scheme M and a family Xu with this latter property, then the functor F is
represented by M .

Example 23.0.6. The Hilbert scheme. LetM be the set of closed subschemes
Y of X = P

n
k with a given Hilbert polynomial P . A family of elements of M

will be a closed subscheme Y ⊆ XS = P
n
S , flat over a scheme S, all of whose

closed fibers are elements of M. The associated functor F(S) is called the
Hilbert functor. This functor is represented by the Hilbert scheme (1.1a), so it
is a representable functor.

Proposition 23.1. If the functor F associated to a moduli problem M is
representable by a scheme M , then M is also a coarse moduli scheme for F ,
and the universal family Xu/M is a tautological family.

Proof. Since F ∼= hM , we take the isomorphism as our morphism of func-
tors ϕ : F → hM . Property (a) of the definition, namely F(k) → hM (k)



23. Introduction to Moduli Questions 153

bijective, follows from the isomorphism. We have only to check the universal
property (b), namely, if ψ : F → hN is another morphism, then there exists
a unique morphism e : M → N such that ψ = he · ϕ. By hypothesis there is
a morphism hM = F → hN , so it remains to show that this comes from a
morphism e : M → N , and this is left as an exercise (Ex. 23.1).

Remark 23.1.1. A family X/S for a moduli problem M is trivial if it is
obtained by base extension from the family consisting of one element of M
over a point. A family X/S with S of finite type over k is fiberwise trivial if the
fibers Xs are isomorphic for all closed points s ∈ S. If M has a fine moduli
space M , then every fiberwise trivial family must be trivial, because it is
obtained by pulling back the universal family at a single point. Because of
this property, we will see (25.2.1) that the one-point coarse moduli space for
curves of genus 0 is not a fine moduli space.

Remark 23.1.2. Since there are nonreduced fine moduli spaces (for example
Mumford’s curves in P

3 (13.1)), it follows that there are nonreduced coarse
moduli spaces, even though it seems in the definition of a coarse moduli
space that we dealt only with closed points and hence apparently cannot
distinguish a scheme from its associated reduced scheme.

One of the great benefits of having a fine moduli space is that we can study
it using infinitesimal methods.

Proposition 23.2. Let M be a fine moduli scheme for the moduli problem
M, and let X0 ∈M correspond to a point x0 ∈M . Then the Zariski tangent
space to M at x0 is in one-to-one correspondence with the set of families X
over the dual numbers D whose closed fibers are isomorphic to X0.

Proof. Indeed, the Zariski tangent space to M at x0 can be identified with
Homx0(D,M), [57, II, Ex. 2.8], and this in turn corresponds to the subset of
those elements of F(D) restricting to X0 over k.

Extending the same argument to higher-order infinitesimal neighborhoods
we obtain the following.

Proposition 23.3. Let F be the functor associated to a moduli problem M,
let X0 ∈ M, and consider the functor on Artin rings F0 that to each local
Artin ring A over k assigns the set of families of elements of M over SpecA
whose closed fiber is isomorphic to X0. If M has a fine moduli scheme, then
the functor F0 is pro-representable (§15).

Proof. Let M be a fine moduli scheme for M, let x0 ∈ M correspond to
X0 ∈M, and let R be the completion of the local ring of x0 on M . Since M is
a fine moduli space, each element of F0(A) corresponds to a unique morphism
SpecA→M whose image lands at the point x0. Such morphisms correspond
to ring homomorphisms R → A. Thus the functor F0 is pro-representable,
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and its formal family arises from the base extension of the universal family
Xu/M to SpecR, hence is effective (§21).

Warning 23.3.1. The local functor F0 considered here consists of families
over SpecA whose closed fiber is isomorphic to X0. This is what we called
the crude local functor in §18, and in general is not the same as the local
functor of deformations of X0, which require a fixed isomorphism of X0 with
the closed fiber; cf. (18.4) and the discussion following, which contrasts these
two different local functors.

Corollary 23.4. Let F be a representable functor, represented by a scheme
M , and let x0 ∈ M be a point. If we have an obstruction theory for the local
functor F0, then knowing its tangent space t0 and its obstruction space V0,
the dimension of M at x0 is bounded:

dimx0(M) ≥ dim t0 − dimV0.

Proof. Just apply (11.2) to the local ring of x0 on M .

Definition. We say that a contravariant functor F from (Sch /k) to (Sets) is
a sheaf for the Zariski topology if for every scheme S and every covering of S
by open subsets {Ui}, the diagram

F(S)→
∏
F(Ui) ⇒

∏
F(Ui ∩ Uj)

is exact. Spelled out, this means two things:

(a) given elements x, x′ ∈ F(S) whose restrictions to F(Ui) are equal for all
i, then x = x′, and

(b) given a collection of elements xi ∈ F(Ui) for each i such that for each
i, j, the restrictions of xi and xj to Ui ∩Uj are equal, then there exists an
element x ∈ F(S) whose restriction to each F(Ui) is xi.

Proposition 23.5. If the moduli problem M has a fine moduli space, then
the associated functor F is a sheaf for the Zariski topology.

Proof. Indeed, if F = hM , then for any scheme S, F(S) = Hom(S,M),
and one knows that morphisms from one scheme to another are determined
locally, and can be glued together if they are given locally and are compatible
on overlaps [57, II.3.3, Step 3].

Example 23.5.1. We will see that the functor of families of curves of genus 0
is not a sheaf in the Zariski topology (25.2.1).

Remark 23.5.2. Grothendieck’s theory of descent [45, exposé 190] shows
more generally that a representable functor is a sheaf for the fpqc (faithfully
flat quasi-compact) topology, and hence also for the étale topology.
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References for this section. There are many general discussions of moduli
problems in the literature, for example [119], [157], [137], just to name a few.
Grothendieck’s Séminaire Bourbaki talks [45] develop his method of repre-
sentable functors, and in particular their application to the Hilbert and Picard
schemes.

Exercises.

23.1. (a) For each scheme M we have defined the contravariant functor hM =
Hom(·,M) from (Sch /k) to (Sets). Show that h is a covariant functor from (Sch /k)
to the category (Funct) of contravariant functors from (Sch /k) to (Sets), and that
it is fully faithful, meaning that the natural map

Hom(Sch)(M,N) → Hom(Funct)(hM , hN )

is bijective.
(b) Use part (a) to show that if F is a representable functor, then F has the

universal property (b) of the definition of a coarse moduli space, and so the fine
moduli space M is also a coarse moduli space.

23.2. Let M be a moduli problem and suppose that some element X0 ∈ M has a
finite group of nontrivial automorphisms (for example, a curve of genus 2). Then M
cannot have a fine moduli space. Consider a triangle S made of three lines. On each
line put the trivial family X0; at two corners, glue by the identity, and at the third
corner, glue by a nontrivial automorphism σ. Show that this makes a fine moduli
scheme impossible. (One could also use a base scheme S made of two curves meeting
at two distinct points.)

23.3. Let F be the Hilbert functor of closed subschemes with a given Hilbert
polynomial P of X = P

n
k . Show that F is a sheaf for the Zariski topology (without

using the fact that F is representable!).

23.4. LetX/k be a projective scheme, and consider the functor F(S) = Pic(X × S)
for each scheme S/k. Here Pic denotes the group of invertible sheaves modulo
isomorphism. Give an example to show that F is not a sheaf for the Zariski topology.

23.5. Let M be the family of nonsingular projective curves of genus g ≥ 3 having
no nontrivial automorphisms. Show that the functor F of flat families of elements
of M is a sheaf for the Zariski topology.

23.6. If X ⊆ P
n
T is a flat family of closed subschemes of P

n
k , with T integral

and of finite type over k, show that a jump phenomenon of the Hilbert functor is
impossible. Here we are considering closed subschemes, so this means that the fibers
Xt are equal for all t �= 0. You have to show that X0 is equal to the others. You
think it is obvious? Do not use representability of the Hilbert functor.

23.7. For families of invertible sheaves on a fixed nonsingular projective variety,
show that jump phenomena are impossible. Do not use representability of the Pic
functor.
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24. Some Representable Functors

In this section we mention some representable functors, in particular Hilb and
Pic. We will not give complete proofs, which can be found elsewhere, and which
extend beyond the aims of this book. However, we will discuss some aspects
of the proofs, since these shed light on the nature of representable functors
and help in understanding why some other functors are not representable.

Theorem 24.1. The Hilbert functor, which to every scheme S/k associates
the set of subschemes Y ⊆ P

N
S , flat over S, whose fibers all have a given

Hilbert polynomial P , is representable by a scheme M , projective over k.

We have already stated this theorem, in different words, as (1.1a). A com-
plete proof can be found in the article of Nitsure [124]. In the course of the
proof, one has to establish certain properties of the functor. These are useful
to consider for any functor.

Definition. A contravariant functor F : (Sch /k)→ (Sets) is bounded if there
exists a scheme S of finite type over k and a family X ∈ F(S) such that every
X0 ∈ F(k) is isomorphic to the fiber Xs for some closed point s ∈ S. (Here
by fiber, of course, we mean the image of X in F(k) corresponding to the
morphism Spec k → S that sends the point to s.)

We say that F is separated if for any nonsingular curve S/k and a point
s0 ∈ S, if X and X ′ are two elements of F(S) whose fibers Xs,X

′
s are isomor-

phic for all s ∈ S, s �= s0, then also Xs0
∼= X ′

s0
.

We say that F is complete if for any nonsingular curve S/k and point
s0 ∈ S, given an element X ∈ F(S − {s0}), then there exists an element
X ′ ∈ F(S) such that the fibers Xs and X ′

s are isomorphic for all s �= s0.

Proposition 24.2. If the functor F is represented by a scheme M of finite
type over k, then F is bounded. In that case the scheme M is separated (resp.,
proper over k) if and only if F is separated (resp., separated and complete).

Proof. Left to reader as (Ex. 24.1).

To show that the Hilbert functor is bounded, one uses Castelnuovo–
Mumford regularity.

Definition. A coherent sheaf F on a projective scheme X is m-regular if
Hi(F(m− i)) = 0 for each i > 0.

Proposition 24.3 (Mumford). If F is m-regular, then F is also m′-regular
for all m′ ≥ m. Furthermore, F(m) is generated by global sections.

Proof. [115] or [124, 5.1].
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Proposition 24.4. A family M of coherent sheaves on a projective scheme
X/k, all having the same Hilbert polynomial, is bounded (meaning the functor
of flat families of sheaves in M is bounded) if and only if there is a uniform
m0 such that all members of M are m0-regular.

Proof (in outline). One direction is easy. If M is a bounded family, then
there is a scheme S of finite type over k together with a coherent sheaf F
on X × S, flat over S, containing among its fibers at closed points of S all
elements of M. For any i, n, the function hi(Fs(n)) is semicontinuous for
s ∈ S. By Serre’s vanishing theorem it is zero for i > 0, n � 0 for each s.
Looking at the generic points of all irreducible components of S, we find a
uniform n0 to make all the hi(Fs(n)) = 0 for all n ≥ n0 at those generic
points. Then by semicontinuity, the hi are 0 on a dense open subset U of S.
Let S1 = S − U and find an n1 such that hi(Fs(n)) = 0 for all n ≥ n1 at the
generic points of S1. Then also they are zero on an open dense subset U1 ⊆ S1.
Let S2 = S1−U1, and repeat, until the hi are zero everywhere. Then each Fs

is (max{ni}+ dimX)-regular.
Now suppose conversely that there is a uniform m0 such that all the

elements of M are m0-regular. In that case each F(m0) will be generated
by global sections and h0(F(m0)) = P (m0), the value of the associated
Hilbert polynomial, since hi = 0 for i > 0. Thus we can find a surjec-
tive map ON

X → F(m0) for each F , where N = h0(F(m0)). Let G be the
kernel. Then a diagram chase of cohomology shows that there is another uni-
form m′

0 such that all the G’s are m′
0-regular. Hence G(m′

0) is generated by
global sections. Let h0(G(m′

0)) = M . Then F is completely determined by
the M -dimensional subspace H0(G(m′

0)) of H0(ON
X (m′

0)). These vector sub-
spaces are parametrized by a finite-dimensional Grassmann variety, and over
a suitable subspace of that Grassmann variety we obtain a family containing
all of our initial sheaves F .

An important step in the proof of existence of the Hilbert scheme is the
following.

Proposition 24.5. The set of subschemes Y of P
n
k with Hilbert polynomial P

forms a bounded family.

Proof. Using the previous proposition it is enough to show that there is a uni-
formm0 such that the ideal sheaves IY of all such Y in P

n
k arem0-regular. This

is accomplished by induction on dimY , using a generic hyperplane section.
See [124, 5.3] for details.

Remark 24.5.1. The fact that the Hilbert functor is separated and complete
is immediate, because if S is a curve and U an open subset, and if Y ⊆ P

n
U

is a closed subscheme flat over U , then there is a unique Ȳ ⊆ P
n
S flat over S

restricting to Y , namely the scheme-theoretic closure of Y in P
n
S .
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Remark 24.5.2. If to each closed subscheme Y ⊆ X = P
n
k we associate its

structure sheaf OY , then we can regard the Hilbert scheme as parametrizing
all quotients OX → OY → 0 with Hilbert polynomial P . A generalization
of the Hilbert scheme is the Quot scheme, which parametrizes all quotients
E → F → 0 where E is a fixed coherent sheaf on X = P

n
k , and F runs

through all quotients with a given Hilbert polynomial. Cf. (19.3), where we
showed that the associated local deformation functor is pro-representable.
Grothendieck shows that the Quot functor is representable by a projective
scheme using the same techniques as for the Hilbert functor.

Next we consider the Picard scheme, which should parametrize invertible
sheaves. Fix a schemeX/k. For any base scheme S/k we can consider the group
Pic(X×S) of invertible sheaves on X×S. This is a contravariant functor in S,
but in general it is not a sheaf in the Zariski topology (Ex. 23.4), so it cannot be
representable. Besides, what we really care about is the family of the invertible
sheaves on the fibers X × {s}, and not the invertible sheaf on X × S. If L is
an invertible sheaf on X ×S, and if N is an invertible sheaf on S, then L and
L′ = L ⊗ p∗2N have the same fibers, so represent the same family. Therefore
we consider the modified functor Pic(X × S/S) = Pic(X × S)/p∗2 PicS. But
this one may also fail to be a sheaf for the Zariski topology. In that case we
can take the associated sheaf and consider this new functor. But this one may
still fail to be representable, because a representable functor is always a sheaf
for the étale topology according to descent theory, and this functor, which is
a sheaf for the Zariski topology, may fail to be a sheaf for the étale topology.
See Kleiman’s article [79, §9.2] for a detailed discussion of these subtleties.

We can avoid all these difficulties by trivializing families along a section.
So let X be a scheme of finite type over the algebraically closed field k, and
let P be a fixed point. We consider the functor PicX/k,P , which to each base
scheme S assigns the group of invertible sheaves L on X ×S, together with a
fixed isomorphism of L | {P} × S ∼= OS .

Theorem 24.6. With the above hypotheses, assume furthermore that X is
integral and projective. Then the functor PicX/k,P is represented by a separated
scheme, locally of finite type over k, which we call the Picard scheme of X/k.

Proof. See [79, 9.4.8].

As a variant of the Hilbert scheme, we can consider the Hilbert-flag scheme
parametrizing nested sets of closed subschemes (cf. (Ex. 6.8)). For a flag of
length 2, fix X = P

n
k and let P,Q be two Hilbert polynomials. We consider

the functor F that to each base scheme S assigns a pair of closed subschemes
Y ⊆ Z ⊆ X × S, both flat over S, and where the fibers of Y (resp., Z) have
Hilbert polynomial P (resp., Q).

Theorem 24.7. The functor F is represented by a scheme, projective over k,
which we call the Hilbert-flag scheme.
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Proof. One can deduce this from the existence of the relative Hilbert scheme:
First let H be the Hilbert scheme associated to the Hilbert polynomial Q, with
universal family Zu/H. Then take the Hilbert scheme of relative subschemes
Y ⊆ Zu × S/H × S with Hilbert polynomial P . For details see [152, §4.5]
(cf. (Ex. 6.8)).

It is often useful to consider deforming not only schemes, but also mor-
phisms of schemes. Given a morphism f : X → Y of schemes over k, a
deformation of f (keeping X,Y fixed) over an Artin ring A is a morphism
f ′ : X ×A→ Y ×A such that f ′ ⊗ k = f .

Lemma 24.8. To give a deformation of a morphism f : X → Y (keeping X
and Y fixed) it is equivalent to give a deformation of the graph Γf as a closed
subscheme of X × Y .

Proof. To any deformation f ′ of f we associate its graph Γf ′ , which will
be a closed subscheme of X × Y × A. It is a deformation of Γf . Conversely,
given a deformation Z of Γf over A, we need only verify that it is a graph of
some morphism. The projection p1 : Z → X ×A gives an isomorphism when
tensored with k. From flatness of Z over A it follows that p1 is an isomorphism,
and so Z is the graph of f ′ = p2 ◦ p−1

1 .

Proposition 24.9. Assume that Y is nonsingular. Then the tangent space
to the deformation functor of f : X → Y (keeping X and Y fixed) is
H0(X, f∗TY ), and the obstructions to deforming f lie in H1(X, f∗TY ). If X
and Y are also projective, the deformation functor of f is pro-representable.

Proof. From (24.8) we must consider the deformations of Γf as a closed
subscheme of X × Y . Note that Γf = (f × id)−1ΔY , where ΔY ⊆ Y × Y is
the diagonal. Since Y is nonsingular, ΔY is a local complete intersection in
Y ×Y , and IΔ/I2

Δ = Ω1
Y/k. It follows that Γf is a local complete intersection

in X × Y , and that its normal bundle is f∗TY . Now our result follows from
the corresponding discussion for the Hilbert scheme (6.2), (17.1).

Theorem 24.10. Given X,Y projective schemes over k, the global functor of
families of morphisms f : X × S → Y × S over a scheme S is represented by
a union of quasi-projective schemes over k.

Proof. This follows from the existence of the Hilbert scheme of closed sub-
schemes of X × Y (24.1), and the observation that the set of subschemes Z
representing graphs of morphisms is an open subset of the Hilbert scheme.
There will be different quasi-projective components depending on the Hilbert
polynomial of Z.

Remark 24.10.1. If f : X → Y is a closed immersion, there is a natural
morphism of functors Def(f)→ Hilb(Y ) obtained by assigning to f the closed
subscheme image. If Y is nonsingular, the exact sequence
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I/I2 → Ω1
Y |X → Ω1

X → 0

dualizes to give a cohomology sequence

0→ H0(T 0
X)→ H0(f∗TY )→ H0(NX/Y ).

The middle group represents infinitesimal deformations of f . The image on
the right is the corresponding deformation of the subscheme. If the subscheme
is unchanged, then f comes from an infinitesimal automorphism of X. See also
(20.2).

Remark 24.10.2. A special case of the Hom functor is the functor of iso-
morphisms. Given X,Y schemes over a base scheme S, for any base extension
T → S, we denote by F(T ) the set of isomorphisms ϕ : X×S T

∼→ Y ×S T , as
schemes over T . Giving ϕ is equivalent to giving its graph Γϕ ⊆ X × Y × T .
Thus, if X and Y are projective over S, the representability of the Hilbert
scheme shows that F is globally represented by a scheme S′ = IsomS(X,Y ),
quasi-projective over S. What this means, in more detail, is that S′ comes
together with a universal isomorphism ϕ : X ×S S

′ ∼→ Y ×S S
′, and for any

other base scheme T and any isomorphism ψ : X ×S T → Y ×S T , there is a
unique morphism f : T → S′ such that ψ = ϕ×S′ T .

Remark 24.10.3. A generalization of the above discussion allows us to treat
deformations of f : X → Y , keeping Y fixed, but allowing both f and X to
vary. We consider the functor F = Def(X, f) that to each Artin ring assigns
a deformation X ′/A, together with its closed immersion X ↪→ X ′, and a
morphism f ′ : X ′ → Y ×A, restricting to f on X. If X and Y are projective
over k, one can apply Schlessinger’s criterion as before to see that F has a
miniversal family. If X and Y are both nonsingular, there is an exact sequence
of tangent spaces

H0(f∗TY )→ tF → H1(TX),

where the right-hand arrow is the forgetful functor Def(X, f)→ Def(X), and
the kernel comes from those deformations of f that leave X fixed, which we
studied above.

A spectacular application of the deformation theory of a morphism was
Mori’s proof that a nonsingular projective variety with ample tangent bundle
is isomorphic to P

n (“Hartshorne’s conjecture”) [109]. We will not describe
how he deduced the existence of rational curves on such a variety in charac-
teristic 0 from their existence in characteristic p > 0; nor will we trace the
steps leading from the existence of rational curves to the final result. We will
only prove the key step, using the technique that is now called “bend and
break,” which is the following criterion for the existence of a rational curve
on a manifold in characteristic p > 0.
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Theorem 24.11 (Mori). Let X be a nonsingular projective variety over an
algebraically closed field k of characteristic p > 0. Assume that the canonical
divisor KX is not numerically effective, i.e., there exists an irreducible curve
C with C.KX < 0. Then X contains a rational curve, i.e., an integral curve
whose normalization is isomorphic to P

1.

Proof. Let C0 ⊆ X be an integral curve with (C0.KX) < 0. Let C1 → C0 be
the normalization of C0, and let g = genus of C1. If g = 0 there is nothing to
prove, so we suppose g > 0. Since C0.KX < 0, we can find q = pr for r � 0
such that

−q(C0.KX) ≥ ng + 1,

where n = dimX.

Let f : C → C1 be the qth k-linear Frobenius morphism, i.e., C is the
same abstract curve as C1, but with structural morphism to k modified by
qth powers in k, so that f is a purely inseparable k-morphism of degree q.
Note that the genus of C is still g. We denote also by f the composed map
C → C1 → C0 ⊆ X.

Fix a point P ∈ C. We will consider the deformation theory of the mor-
phism f : C → X, keeping C and X fixed, and also keeping fixed the image
f(P ) = P0 ∈ C0. As in (24.10), the corresponding deformation functor is
represented by a scheme HomP (C,X), quasi-projective over k; its tangent
space is H0((f∗TX)(−P )) and its obstructions lie in H1((f∗TX)(−P )).

Now the dimension estimate for representable functors (23.4) tells us that

dim HomP (C,X) ≥ h0((f∗TX)(−P ))− h1((f∗TX)(−P )).

To compute this, note that TX is locally free of rank n; the restriction TX |C0

has degree −(C0.KX), and so f∗(TX) has degree −q(C0.KX). The twist −P
subtracts n from the degree. Then by Riemann–Roch on C we have

χ((f∗TX)(−P )) = −q(C0.KX)− n+ n(1− g),

and by our choice of q this number is at least 1, so dim HomP (C,X) ≥ 1.
Thus there exist a nonsingular curve D, not necessarily complete, and a

morphism F : C ×D → X representing a nonconstant family of morphisms
of C to X, parametrized by D, all sending P to P0.

I claim, in fact, that D is not complete. For suppose D were complete.
Then C ×D would be a nonsingular projective surface. For any point Q ∈ C,
the curve Q × D is algebraically equivalent to P × D. Now let L be a very
ample invertible sheaf on X, corresponding to a projective embedding of X
in some projective space. The degree of the image curve F (Q × D) is then
measured by (Q ×D).F ∗L. Since Q ×D ∼ P ×D, and F (P ×D) = P0 is a
point, this degree is zero. So F (Q×D) is also a point, and this implies that
F is a constant family f : C → X, contrary to hypothesis. Thus D cannot be
complete.
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Now let D ⊆ D̄ be a completion to a projective nonsingular curve D̄, and
let F̄ : C×D̄ ��� X be the corresponding rational map, which by the previous
argument cannot be a morphism. The undefined points of F̄ can be resolved
after a finite number of blowings up of points π : Y → C×D̄ into a morphism
F ′ : Y → X. Let E ⊆ Y be the exceptional curve of the last blowing up that
was needed to get the morphism F ′. Then F ′ does not collapse E to a point,
and the image F ′(E) is the required rational curve in X.

References for this section. Mori’s theorem occurs in his paper [109],
which is also where the proof of the dimension estimate for representable func-
tors (23.4) was proved. The Isom scheme is used by Mumford in his discussion
of Picard groups of moduli problems [114]; cf. §§26, 27. The general theory
of the Hom and Isom schemes as representable functors appears in the same
exposé of Grothendieck’s as the Hilbert scheme [45]. For the existence of the
Hilbert scheme, see also [161] and [152]. The existence of the Picard scheme
is in [45, exposé 232]. See also [79].

Exercises.

24.1. Give a proof of (24.2) using the valuative criteria of separatedness and
properness.

24.2. Let M be the family of invertible sheaves of fixed degree d on an integral
projective curve X.

(a) Show that M is bounded.
(b) Show that M is separated.
(c) But show that M may not be complete.

24.3. Let M be the family of rank 2 vector bundles of degree 0 on a nonsingular
projective curve X of genus g.

(a) Show that the family M is not bounded.
(b) Show that the family M is not separated.
(c) But show that the family M is complete.

Note: We will see later (§28) that for rank 2 vector bundles of degree d on a
curve of genus g:

(d) If one restricts to simple or stable vector bundles, the family is bounded.
(e) The family of stable bundles is separated, but the family of simple bundles is

not necessarily separated.
(f) For d even the family of stable bundles is not complete, but for d odd it is

complete.

24.4. For each g ≥ 0, the family of nonsingular projective curves of genus g
is bounded. Hint: Take projective embeddings of sufficiently high degree and use
boundedness of the Hilb functor.

24.5. If X is an integral projective curve over k, show that the Picard scheme,
which exists by (24.6), is a disjoint union of nonsingular varieties of dimension
g = pa(X). If furthermore X is nonsingular show that each component of the Picard
scheme is proper over k.
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24.6. Let X0 be a projective scheme over k with only finitely many automor-
phisms. Show that a jump phenomenon X/T with special fiber X0 is impossible, as
follows.

Suppose X/T is a flat family of projective schemes with Xt all isomorphic for
t �= 0, and fiber X0 at t = 0 not isomorphic to Xt for t �= 0. Consider the two
families X × T and T × X over T × T , and let S = IsomT×T (X × T, T × X)
(24.10.2). Thus a point of S corresponds to a triple (t1, t2, ϕ), where ϕ is an iso-
morphism of Xt1

∼→ Xt2 . Consider the projection π : S → T onto the first factor
T . Show that the fiber π−1(0) is finite, while for each t �= 0, π−1(t) has dimension
≥ 1. This will contradict the semicontinuity of dimension of fibers of a morphism
[57, II, Ex. 3.22].

24.7. (a) Let X,X ′ be flat families of projective varieties over a nonsingular curve
T of finite type over k algebraically closed. Suppose for every closed point t ∈ T the
fibers Xt and X ′

t are isomorphic. Show that there is another nonsingular curve T ′

and a dominant morphism T ′ → T such that the two families X×T T ′ and X ′×T T ′

obtained by base extension are isomorphic. Hint: Use an Isom scheme.
(b) Let X/T be a flat family of projective varieties over a curve T as in (a), and

assume that X/T is a fiberwise trivial family, i.e., the fibers Xt for closed points
t ∈ T are all isomorphic to each other. Show that there are another curve T ′ and
a dominant base extension T ′ → T such that the family X ′ = X ×T T ′ is trivial
over T ′.

(c) Let X0 be a rigid projective scheme over k, and let X/T be a flat family of
projective schemes over a curve T as above with fiber over a point 0 ∈ T isomorphic
to X0. Show that this family is fiberwise trivial over some open neighborhood of
0 ∈ T , and hence by (b) becomes trivial after a base extension T ′ → T as above.
Hint: Let X ′/T be the trivial family X0×T , and consider the scheme IsomT (X,X ′).
Use the fact that every infinitesimal deformation of X0 is trivial (Ex. 10.3) to show
that the image of the Isom scheme in T must contain an open neighborhood of the
point 0 ∈ T .

24.8. Give an example to show that the functor of isomorphism classes of non-
singular projective varieties is not separated in general.

24.9. Show, in contrast to the previous exercise, that for any fixed g, the functor of
families of nonsingular projective curves of genus g over k is separated. Hint: Here is
one way to approach the problem. Given a family of curves X/T , use an embedding
into projective space and the completeness of the Hilbert scheme to embed this in a
larger family, allowing singular fibers, so that we may assume that X is a projective
surface mapping to a projective nonsingular curve T . Next, resolve the singularities
of X, so that we may assume that X is a nonsingular surface. Now, given two such
surfaces over T whose fibers are isomorphic for t ∈ U , an open subset, use (Ex. 24.7)
to conclude that X and X ′ are birationally equivalent. Therefore [57, V, 5.5] there is
a third surface X ′′ together with birational morphisms of X ′′ to X and to X ′, each
of which can be factored into a sequence of monoidal transformations. Now if X0

and X ′
0 are two special fibers that are both nonsingular, but 0 /∈ U , then the inverse

images of X0 and X ′
0 in X ′′ are obtained from each by adding rational curves, and

are equal. Therefore X0
∼= X ′

0.
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25. Curves of Genus Zero

Any complete nonsingular curve of genus 0 over an algebraically closed field k
is isomorphic to P

1
k [57, IV, 1.3.5], so you may think that the moduli problem

for curves of genus 0 is trivial. But even in this case, there are some interesting
aspects to the problem.

So let us consider the moduli problem for nonsingular projective curves of
genus 0 over an algebraically closed field k. The setM of isomorphism classes
of such curves has just one element, namely P

1
k. A family of curves of genus 0

over a scheme S will be a scheme X, smooth and projective over S, whose
geometric fibers are curves of genus 0. That means that for each s ∈ S, if we
take the fiber Xs and extend the base field to the algebraic closure k(s) of
the residue field k(s), then the new curve Xs̄ = Xs×k(s) k(s) is a nonsingular
projective curve of genus 0 over the field k(s).

Proposition 25.1. The one-point space M = Spec k is a coarse moduli
scheme for curves of genus 0, and it has a tautological family.

Proof. The first condition (a) for a coarse moduli scheme (§23) is satisfied
because the one point of M corresponds to the one curve P

1
k. We can also see

right away that there is a tautological family: just take P
1
k/Spec k. For any

family X/S of curves of genus 0, where S is a scheme over k, there is a unique
morphism S → M = Spec k, so we have the required morphism of functors
ϕ : F → hM .

For the universal property (b), suppose ψ : F → hN is any morphism
of functors, where F is our functor of families of curves of genus 0. Then in
particular, the family P

1
k/M determines a morphism e : M → N . We need

to show that ψ factors through the morphism ϕ : F → hM described above,
which maps every scheme S/k to Spec k.

Lemma 25.2. If C is an Artin ring with residue field k algebraically closed,
then any family X/SpecC of curves of genus 0 is trivial, namely isomorphic
to P

1
Spec C .

Proof. Since k is algebraically closed, the special fiber X0 is just P
1
k. Then

by our infinitesimal study of deformations (10.3) the choices at each step are
given by H1(X0, TX0) = 0. Thus at each step there is a unique deformation,
which must be equal to P

1
Spec C . Thus P

1 is a rigid scheme (5.3.1), (Ex. 10.3).

Proof of (25.1), continued. Let X be a family of curves of genus 0 over
a scheme S of finite type over k. For any closed point s ∈ S, the fiber Xs is
just P

1
k, so the point s must go to the same point n0 ∈ N as the image of the

morphism e : M → N . Thus all closed points of S go to n0. But we need more.
We need to know that the morphism S → N factors through the reduced point
n0 as a closed subscheme of N . And this follows from the lemma, because the
restriction of the family on S to any artinian closed subscheme of S will be
trivial, and therefore will factor through the reduced scheme Spec k.
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If S is not of finite type over k, a similar argument, making base extensions
to geometric points of S and Artin rings over them, shows in that case also
that the associated map S → N factors through the reduced point n0 ∈ N ,
and so the morphism ψ factors through ϕ, as required.

Example 25.2.1. Here we show that the one-point space M is not a fine
moduli space for curves of genus 0. Just think of the theory of ruled surfaces.
A ruled surface is a nonsingular projective surfaceX together with a morphism
π to a nonsingular projective curve C whose fibers are copies of P

1 and that has
a section, and therefore is isomorphic to P(E) for some rank 2 vector bundle
E on C [57, V, 2.2]. In particular, this implies that C can be covered by open
subsets Ui over which X is trivial, i.e., π−1(Ui) ∼= Ui×P

1. On the other hand,
there are many ruled surfaces X that are not trivial. Since a ruled surface is
in particular a family of curves of genus 0 parametrized by C according to our
definition, the functor F is not a sheaf for the Zariski topology: the structure
of X is not determined by knowing its structure locally on C, so the moduli
space cannot be a fine moduli space (23.5).

Another way of putting this is if our space M were a fine moduli space,
then every family of curves of genus 0 would be trivial, i.e., a product of the
base with P

1, and the ruled surfaces give examples of families that are locally
trivial but not globally trivial.

Example 25.2.2. Here we show that families of curves of genus 0 need not
even be locally trivial. Let A = k[t, u], and consider the curve in P

2
A defined

by tx2 + uy2 + z2 = 0. We take S = SpecA − {tu = 0}, and take X to
be this family of curves over S. This is a family of curves of genus 0, but
it is not even locally trivial. If it were, the generic fiber Xη defined by the
same equation over the field K = k(t, u) would be isomorphic to P

1
K . But

Xη has no rational points over K. A rational point would be given by taking
x = f(t, u), y = g(t, u), z = h(t, u), where f, g, h are rational functions in
t and u, not all zero, satisfying the above equation. Clearing denominators,
we may assume that f, g, h are polynomials. Then, looking at the terms of
highest degree in t, u, we see that they cannot cancel in the equation, which
gives a contradiction.

This is an example of a fiberwise trivial family (Ex. 24.7), namely a family
in which all the geometric fibers are isomorphic to each other. But this family
is not trivial, and not even locally trivial. We will see, however, that it is
trivial for the étale topology (Ex. 25.1).

This phenomenon comes from the fact that over a non-algebraically closed
field, there are curves of genus 0 that have no rational points. For example
over R there is the conic x2 + y2 + z2 = 0 in P

2, which has no real points.
Over the rational numbers there are many different nonisomorphic curves
of genus 0 (25.3.1). This is part of the reason for the subtleties in families.
We can improve the situation by changing the moduli problem slightly to
consider pointed curves.
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Definition. A pointed curve of genus 0 over k will be a curve of genus 0
together with a choice of a point, rational over k. So the set of objectsM we
are considering still has just one element, namely P

1
k together with a chosen

point P . (The choice of point does not matter, since the automorphisms of
P

1 are transitive on rational points.) A family of pointed curves will be a flat
family X/S, whose geometric fibers are all curves of genus 0, together with
section σ : S → X (which some people call an S-point of X). The section σ
induces a point on each fiber in a coherent way.

As before, we can show that the one-point space M = Spec k is a coarse
moduli scheme for pointed curves of genus 0, and that it has a tautological
family. Also as before it is not a fine moduli scheme, because of the ruled
surfaces exhibited in (25.2.1). What is different in this case is that now all
families are locally trivial.

Proposition 25.3. Any family X/S of pointed curves of genus 0 is locally
trivial, that is, every point s ∈ S has an open neighborhood U such that
π−1(U) ∼= P

1
U . In particular, a pointed curve of genus 0 over any field k

(not necessarily algebraically closed) is isomorphic to P
1
k.

Proof. (Cf. [57, V, 2.2] for a special case.) Given the family π : X → S and
the section σ : S → X, we let D be the scheme-theoretic image of σ. Then D
is flat over S, and its restriction to any fiber is one point, so D is a Cartier
divisor on X. Let L be the associated invertible sheaf on X. Then for each
point s ∈ S, H0(Xs,Ls) is a 2-dimensional vector space, and H1(Xs,Ls) = 0.
Now we apply cohomology and base extension [57, III, 12.11] to the maps

ϕi(s) : Rif∗(L)⊗ k(s)→ Hi(Xs,Ls).

For i = 1, since H1(Xs,Ls) = 0, ϕ1(s) is surjective, hence an isomorphism, so
R1f∗(L) = 0. The zero sheaf is locally free, so we find that ϕ0(s) is surjective,
hence also an isomorphism. Since ϕ−1(s) is trivially surjective, we find that
f∗L is locally free of rank 2 on S. Call it E . Then the natural map π∗E →
L → 0 determines a morphism X → P(E), which is an isomorphism on each
fiber, hence an isomorphism. If we take U ⊆ S to be an open set over which
E is free, then π−1(U) ∼= P

1
U as required.

Remark 25.3.1. A deeper study of families of curves of genus 0 inevitably
leads to the Brauer group. In case of a field k, the Brauer group Br(k) is defined
as the Galois cohomology H2(G,K∗) where K is the separable closure of k
and G is the Galois group of K/k [155]. A Brauer–Severi variety over k is a
scheme V/k such that V ×kK ∼= P

n
K for some n. Then Br(k) can be described

as the union, over all n, of isomorphism classes of Brauer–Severi varieties of
dimension n over k. Thus to a curve of genus 0 over k corresponds an element
of the Brauer group, which vanishes if and only if that curve is isomorphic
to P

1
k.

In the case of a scheme S, Grothendieck [46] defines the Brauer group
of S as a certain subgroup of H2

ét(S,Gm), classifying Brauer–Severi schemes
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over S, that is, flat schemes X/S whose geometric fibers are all projective
spaces. Thus to a flat scheme X/S with geometric fibers P

1 is associated an
element of Br(S) that is zero if and only if X/S is locally trivial for the Zariski
topology, i.e., X ∼= P(E) for some rank 2 vector bundle on S.

Exercises.

25.1. For the family X/S described in (25.2.2), let S′ → S be the base extension
obtained by adjoining

√
t and

√
u. Show that S′ is a finite surjective étale morphism,

and that the extended familyX ′/S′ is trivial. In this case we say that the family X/S
is isotrivial, meaning that it is trivialized by a finite surjective étale base change.

25.2. Show that any flat family X/S of curves of genus 0 is locally isotrivial, or
locally trivial in the étale topology, meaning that there is a surjective étale morphism
S′ → S, not necessarily finite, for which the extended family X ′/S′ becomes trivial.
Hint: Let ωX/S be the relative canonical sheaf, and for an open affine subset U ⊆ S,
let D ⊆ XU be an effective divisor associated to the invertible sheaf ω−1

X/S that is
supported at two distinct points in each fiber. Show that D → U is étale, and that
XD/D has a section. Then use (25.3).

25.3. Take the functor of families of pointed curves of genus 0, define a new functor
that we could call the “sheafification” of the original functor in the Zariski topology,
and show that the new functor is representable.

25.4. Another way to get a representable functor of curves of genus 0 is to rigidify
the curves by taking three distinct rational points. So a family is a smooth proper
morphismX/S whose geometric fibers are curves of genus 0, with the additional data
of three sections σ1, σ2, σ3 : S → X, such that at each fiber the three sections have
distinct support. Show that the corresponding functor is represented by a one-point
space, and the universal family is P

1
k with three points 0, 1,∞.

26. Moduli of Elliptic Curves

In this section we will apply the theory we have developed to elliptic curves.
Our provisional definition is that an elliptic curve over an algebraically closed
field k is a nonsingular projective curve of genus one. We will assume charac-
teristic k �= 2, 3 for simplicity throughout this section.

If one studies one elliptic curve at a time, there is a satisfactory theory,
explained in [57, IV, §4]. To each elliptic curve C over k one can assign an
element j(C) ∈ k, called the j-invariant, in such a way that two elliptic curves
over k are isomorphic if and only if they have the same j-invariant. Further-
more, for any j ∈ k there is an elliptic curve with j-invariant j. Thus the set of
isomorphism classes of elliptic curves over k is in one-to-one correspondence
with the set of closed points of the affine line A

1
k.

The problem of moduli is to understand not only individual curves, but
also flat families X/S whose geometric fibers are elliptic curves. In particular
one can study the formal local problem of deformations over Artin rings of a
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given elliptic curve C/k. Our general theory tells us that this functor has a
miniversal family (18.1), but since h0(TC) �= 0, our basic result (18.3) does
not guarantee that the local functor is pro-representable. On the other hand,
if we consider pointed elliptic curves, namely curves C/k with a fixed point
P ∈ C, and consider deformations with a section extending the point, then
we have seen (18.4.2), (Ex. 18.2) that the local deformation functor is pro-
representable.

We will first prove that the local functor of deformations of a pointed
elliptic curve over Artin rings is equivalent to the deformations of the elliptic
curve without its point.

Proposition 26.1. Let C0 be an elliptic curve over k, and let F be the functor
of local deformations of C0 over local Artin rings (A,m). Let P0 ∈ C0 be a
closed point and let F ′ be the functor of local deformations of the pointed
curves C0, P0, i.e., an element of F ′(A) is a family C/A, flat over A, together
with a section σ : SpecA → C, and a closed immersion C0 ⊆ C, so that
σ(m) = P0. Then the “forgetful” morphism F ′ → F , forgetting the section σ,
is an isomorphism of functors.

Proof. Given a deformation C0 ⊆ C and given P0 ∈ C0, the problem of
finding a section σ of C reducing to P0 ∈ C0 is a question of the Hilbert
scheme of P0 in C0. The normal sheaf NP0/C0 is a 1-dimensional vector space
on the 1-point space P0, so h1(NP0/C0) = 0, and there are no obstructions
(6.2). Hence P0 deforms to give a section σ. Therefore the map F ′(A)→ F (A)
is surjective for each A.

To show that F ′(A)→ F (A) is injective, we use induction on the length of
A. For A = k, we note that since k is algebraically closed, every elliptic curve
has a closed point, and the choice of closed point does not matter, since the
group structure on the curve provides automorphisms that act transitively on
the set of closed points.

Now suppose we are given C and a section σ over A, as well as C ′ over A′,
where A′ → A is a small extension. Then the ambiguity in extending σ lies
in H0(NP0/C0). On the other hand, the automorphisms of C ′ leaving C fixed
are given by H0(TC0). One checks easily that the natural map H0(TC0) →
H0(NP0/C0) is an isomorphism. Hence there is a unique pair (C ′, σ′) up to
isomorphism for each C ′ given, and so F ′(A′)→ F (A′) is bijective.

Remark 26.1.1. Since we know that the functor F ′ is pro-representable,
it follows that the functor F of deformations of (unpointed) elliptic curves
is also pro-representable, even though h0(TC0) �= 0.

Remark 26.1.2. Even though the formal local functors F and F ′ are isomor-
phic, the same does not hold for the global functor of isomorphism classes of
families X/S of elliptic curves, because there are families having no section.
Consider the family of plane curves defined by x3 + ty3 + t2z3 = 0 in P

2
A,
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where A = k[t, t−1]. This is a flat family of elliptic curves, but has no sec-
tion, because to give a section would be to give x = f(t), y = g(t), z = h(t),
polynomials in t and t−1 satisfying this equation, and this is impossible (just
consider the terms of highest degree in f, g, h).

For this reason, when studying global moduli we must make a choice
whether to consider families of unpointed or pointed elliptic curves. We choose
the latter, both because it is easier to handle technically, and also because it
gives a better analogy with the case of curves of genus g ≥ 2, which have only
finitely many automorphisms. So for the rest of this section we will use the
following definitive definition.

Definition. An elliptic curve over a scheme S is a flat morphism X → S
whose geometric fibers are all nonsingular projective curves of genus 1,
together with a section σ : S → X. In particular, an elliptic curve over any
field k is a smooth curve C of genus 1 together with a rational point P ∈ C.

Now we turn to the question of moduli. We fix k algebraically closed,
and for any scheme S/k consider the functor F (S) = {isomorphism classes of
elliptic curves over S}. We ask what kind of moduli space we can find for F .

Proposition 26.2. The functor F does not have a fine moduli space.

Proof. There are several reasons one can give for this. One is that the crude
local functor F1 of local families C/A such that C ⊗A k ∼= C0, but without
specifying the inclusion C0 ⊆ C, is not pro-representable (18.4.2). We have
seen that this would be a necessary condition for the global functor to be
representable (23.3).

A second reason is that if F had a fine moduli space, i.e., if F were repre-
sentable, then any fiberwise trivial family would be trivial (23.1.1). One way
to make a fiberwise trivial family is to take a constant family over P

1, identify
the fibers over 0 and 1 by a nonconstant automorphism τ that sends the dis-
tinguished point P to itself, and glue to get a nonconstant family over a nodal
curve whose fibers are all isomorphic.

Another way to make a fiberwise trivial family is to write an equation like
y2 = x3 + t over A = k[t, t−1]. For each t we get a curve with j = 0, but to
write an isomorphism between this one and the constant family y2 = x3 + 1,
we need t1/6, which is not in the ring A.

Proposition 26.3. The j-line Aj is a coarse moduli space for the functor F
of families of elliptic curves.

Proof. Recall (§23) that to be a coarse moduli space for the functor F means
several things:

(a) The closed points of Aj are in one-to-one correspondence with the isomor-
phism classes of elliptic curves over k. This we know from the basic theory
[57, IV, 4.1].
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(b) For any family X/S there is a morphism ϕ : S → Aj such that for each
closed point s ∈ S, ϕ(s) is the j-invariant of the fiber over s. This step
is easy. Given X/S together with its section σ, for any open affine U =
SpecA ⊆ S, we define an embedding of XA ↪→ P

2
A using the divisor 3σ.

Then by rational operations over the ring A as in [57, IV, §4] (and here
we use the assumption that characteristic k �= 2, 3) we bring the equation
of the image into the form y2 = x3 + ax+ b, with a, b ∈ A. Then

j = 123 · 4a3

4a3 + 27b2

gives the desired morphism from SpecA to the j-line. These patch together
to give ϕ : S → Aj .

(c) Lastly, we must show that the j-line is universal with property (b). So let
N be some other scheme together with a morphism of the functor F to hN ,
i.e., a functorial assignment, for each family X/S of a morphism S → N .
We consider in particular the family given by the equation y2 = x(x− 1)
(x−λ) over the λ-line SpecB with B = k[λ, λ−1, (λ−1)−1]. Then there is
a morphism ϕ : SpecB → N . Furthermore, this morphism is compatible
with the action of the group G of order 6 acting on the λ-line consisting of
the substitutions {λ, λ−1, 1−λ, (1−λ)−1, λ(λ−1)−1, (λ−1)λ−1}, because
the transported family X ′ has fibers isomorphic to those of X. Hence the
morphism ϕ factors through SpecBG, where BG is the fixed ring of the
action of G on B. All that remains is to identify BG with k[j]. Clearly
j ∈ BG. Considering the function fields k(j) ⊆ k(BG) ⊆ k(B), the latter
is of degree 6 over the two former, so k(j) = k(BG). Next note that B is
integral over k[j] : the defining equation of j in terms of λ gives

λ2(λ− 1)2j = 256(λ2 − λ+ 1)3.

This shows that λ is integral over k[j]. Rewriting this equation in terms
of λ−1 and (λ− 1)−1 shows that they too are integral over k[j]. Therefore
BG is integral over k[j]. But these two rings have the same quotient field,
and k[j] is integrally closed, so k[j] = BG.
Thus we obtain a morphism Aj → N , so Aj has the desired universal
property.

Remark 26.3.1. The coarse moduli space Aj does not have a tautological
family. For suppose X/S is a family of elliptic curves, and s0 ∈ S is a point
whose fiber C0 has j = 0. In an affine neighborhood SpecA of s0 we represent
the family by y2 = x3 + ax + b with a, b ∈ A. At the point s0, since j =
123 · 4a3/(4a3 + 27b2), we must have a ∈ m, the maximal ideal of A at the
point s0. Hence j ∈ m3, and the morphism S → Aj is ramified at the point
s0. In particular, S cannot be Aj .

To summarize the discussion so far, we consider the functor of families of
(pointed) elliptic curves. We have seen that the local deformation functor is
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pro-representable for each elliptic curve. The global functor does not have a
fine moduli space, but it does have a coarse moduli space. The coarse moduli
space does not have a tautological family. The global functor is not a sheaf
for the Zariski topology (Ex. 26.1).

This is about all we can say within the frame of discourse up to this
point. But it is unsatisfactory, since it does not give us, as in the case of a
representable functor, a complete description of all possible families of elliptic
curves. To go further we must expand the range of concepts, and this leads to
the world of Grothendieck topologies, algebraic spaces, and stacks. Without
explaining what any of these are, we will rather show explicitly how those
theories manifest themselves in the case of elliptic curves.

The main idea is to think of replacing the Zariski topology by the étale
topology. A local property will be one that holds after an étale base extension
instead of on an open subset. I would like to say that the moduli functor is
“representable to within étale morphisms,” or that “there is a fine moduli
space to within étale morphisms.” To be precise, we make a definition and
prove a theorem.

Definition. Suppose we have a class of algebrogeometric objectsM, defined
over our base field k, for which we wish to classify the flat families, up to
isomorphism, as in §23. A modular family of elements of M is a flat family
X/S, with S a scheme of finite type over k, such that:

(a) For each object C ∈M, there is at least one and there are at most finitely
many closed points s ∈ S for which the fiber Xs is isomorphic to C.

(b) For each s ∈ S, the complete local ring ÔS,s, together with the formal
family induced from X, pro-represents the functor of local deformations
of the fiber Xs.

(c) For any other flat family X ′/S′ of elements ofM, there exists a surjective
étale morphism S′′ → S′ and a morphism S′′ → S such that X ′ ×S′ S′′ ∼=
X ×S S

′′ as families over S′′.

Remark 26.3.2. It follows from the definition that if X1/S1 and X2/S2 are
two modular families, then there is a third modular family X3/S3 and surjec-
tive étale maps S3 → S1 and S3 → S2 such that X1×S1 S3

∼= X3
∼= X2×S2 S3

as families over S3.

Remark 26.3.3. Note that the definition of a modular family cannot be
made purely in terms of the associated functor of families up to isomorphism,
because the condition (b) concerns the functor of local deformations of a fiber
Xs, and these involve a given identification of the special fiber, not just its
class up to isomorphism.

Theorem 26.4. There exists a modular family X/S of elliptic curves over k.

Proof. (a) We will show that the family of plane cubic curves y2 = x(x− 1)
(x − λ) over the λ-line SpecB, where B = k[λ, λ−1, (λ − 1)−1], is a modular
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family. First of all, we know that every elliptic curve is isomorphic to one of
these for some λ �= 0, 1, and that each isomorphism type occurs 2, 3, or 6
times.

(b) Next we need to show that the completion of this family at any
point pro-represents the local deformation functor. Since in any case by pro-
representability there is a morphism from the formal family over the λ-line to
the pro-representing family, and both of these are smooth and one-dimensional
(18.4.2), it will be sufficient to show that the induced map on Zariski tangent
spaces is nonzero. So let y2 = x(x− 1)(x− λ− t) be the induced family over
the dual numbers D = Spec k[t]/t2 at the point λ. We have only to show that
this family is nontrivial over D. Now two curves in P

2
D with equations of the

form above are isomorphic if and only if their λ-values are interchanged by
the six-element group G. This group sends any λ ∈ k to another λ ∈ k and
never to λ+ t; hence the deformation is nontrivial.

(c) Now let X ′/S′ be any family of elliptic curves, and let X/S be a family
with properties (a), (b) above. Then over S′ × S we have two families X × S′

and X ′ × S. Let S′′ = IsomS′×S(X × S′,X ′ × S) (24.10.2). Then there is
an isomorphism over S′′, namely X ×S S

′′ ∼→ X ′ ×S′ S′′. Furthermore, S′′ is
universal with this property.

Now I claim that S′′ → S′ is surjective and étale. For any point s′ ∈ S′,
let C = X ′

s′ be the corresponding fiber. Then the isomorphism type of C
occurs at least once and at most finitely many times in the family X/S, say
at points s1, . . . , sn ∈ S. Furthermore, since the automorphism group G of C
as an elliptic curve is finite, for each si the scheme Isomk(X ′

s′ ,Xsi
) is finite.

Thus by the universal property of the Isom scheme, the fiber of S′′ over S′ is
a finite nonempty set. Hence the map S′′ → S′ is surjective and quasi-finite.

Finally, consider a point s′′ ∈ S′′ lying over s′ ∈ S′. This fixes the corres-
ponding point si ∈ S, and also fixes the isomorphism of X ′

s′ with Xsi
. For

any Artin ring A, quotient of OS′,s′ , we get an induced family over SpecA.
Since S pro-represents the functor of local deformations, there is a unique
morphism of SpecA → S at the point si inducing an isomorphic family.
Furthermore, the isomorphism on the closed fiber having been fixed, there are
no further automorphisms of the family over SpecA (recall the proof of local
pro-representability (18.3)). Hence there is a unique morphism of SpecA to
S′′ at the point s′′. This implies that the induced homomorphism on complete
local rings ÔS′,s′ → ÔS′′,s′′ is an isomorphism, and hence S′′ → S′ is étale,
as required.

Corollary 26.5. If Y/T is a fiberwise trivial family of elliptic curves, then
there exists a finite étale map T ′ → T such that the base extension Y ′/T ′ is
isomorphic to the trivial family. In other words, the family Y/T is isotrivial
(Ex. 25.1).

Proof. Indeed, let X/S be a modular family. Then there is a surjective étale
morphism T ′ → T together with a morphism T ′ → S such that the extended
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families over T ′ are isomorphic. But Y/T is fiberwise trivial, so the image of
T ′ in S is a single point, so the family over T ′ is trivial. Furthermore, if we
take T ′ to be given by the Isom scheme as in the proof of (26.4), then since
the fibers of Y/T are isomorphic, each point of T will have the same number
of points of T ′ lying over it, so T ′ → T will be a finite morphism.

Proposition 26.6. If X/S is a modular family of elliptic curves, the corres-
ponding map of S to the coarse moduli space Aj is étale over points where
j �= 0, 123; ramified of order 2 over j = 123 and ramified of order 3 over
j = 0.

Proof. Writing

j = 256
(λ+ ω)3(λ+ ω2)3

λ2(λ− 1)2
,

where ω3 = 1, shows that at λ = −ω, corresponding to j = 0, the map from
the λ-line to the j-line is ramified of order 3. At λ = −1, 1

2 , 2, corresponding
to j = 123, there are three roots, and the map is of order 6, so it is ramified
of order 2. For j �= 0, 123, there are six values of λ, so it is unramified.

Since the modular family is unique up to étale morphisms, the same holds
for any modular family.

Remark 26.6.1. Thus we may think of a modular family as “the moduli
space,” uniquely determined up to étale morphisms, where the universal
mapping property holds after an étale morphism. Or we may think of the
j-line as “the moduli space,” but where we need

√
j − 123 and 3

√
j as local

parameters at the points j = 123 and j = 0. Still this does not tell us every-
thing about the functor F , in contrast to the case of a representable functor,
where knowledge of the representing scheme and its universal family is equiva-
lent to knowledge of the functor of families. We can ask, what further data
do we need to know the functor entirely? The following remarks will reflect
on this question, without, however, giving a complete answer.

Remark 26.6.2. If X/S is a modular family and S′ → S is any surjective
étale morphism, then X ′ = X×S S

′/S′ is another modular family. Thus there
are bigger and bigger modular families. This leads us to ask whether there is
a smallest modular family. The answer is no. Indeed, there is a family over
the j-line minus the points 0, 123, defined by the equation

y2 = x3 + ax+ b, with a = b =
27
4
· j

123 − j .

A simple calculation shows that for any j �= 0, 123, this defines an elliptic
curve with the corresponding j-invariant. To get a modular family, we need
to take a disjoint union with some patches of families containing curves with
j = 0 and j = 123. There is no smallest such choice.
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Remark 26.6.3. If we confine our attention to elliptic curves with j �= 0, 123,
then Aj − {0, 123} is a coarse moduli space, and it has a tautological family
(§23), given in the previous remark. However, this tautological family is not
a universal family. For any family X/S, there is a unique morphism S →
Aj − {0, 123} sending points s ∈ S to the j-value of the fiber Xs, but the
pullback of our tautological family may not be isomorphic to X, so the functor
is still not representable, even restricting to j �= 0, 123. To see this, note that
y2 = x3 + j2ax + j3b, with the same a, b as above, is another tautological
family over Aj − {0, 123}, but it does not become isomorphic to the previous
one until we take a double covering defined by

√
j. So even in this restricted

case, there is no minimal modular family.

Remark 26.6.4. There is one more question one could ask in trying to make
sense of the functor of all possible families of elliptic curves. Though there
is not a universal family, is there perhaps a small set (say finite) of modular
families Xi/Si such that for any family X/S there is a morphism S → Si for
some i such that X ∼= Xi ×Si

S? No, even this last hope is dashed to the
ground by the following examples of incomparable families over subsets of the
j-line.

Let X0/S0 denote the family described in (26.6.2) over S0 = Aj−{0, 123}.
For any open set U ⊆ S0, let T → U be an étale cover of order 2, and let
X = X0|U ×U T . Now for each u ∈ U , let t1, t2 be the two points lying over u,
and identify the fibers X1,X2 at t1, t2 via the automorphism τ of order 2.
Then glue to get a new family X ′

T over U . Note that we can recover T as
IsomU (X,X ′

T ). The family X ′
T is isomorphic to X if and only if T is the

trivial cover.
Now if π : C → P

1 is any hyperelliptic curve, and U is P
1 minus 0, 123,∞,

and the branch points of π, and T = C|U , then we get a family X ′
T over U .

Two of these for different C,C ′ are isomorphic on a common open set if and
only if the corresponding hyperelliptic curves are isomorphic.

Thus there is not a finite number, there is not even a collection of such
families as we desired parametrized by a finite union of finite-dimensional
algebraic varieties!

Remark 26.6.5 (Completion of the moduli space). Having once found
the coarse moduli space Aj , a natural question is, what extra objects can we
consider in order to obtain a complete moduli space? Here we will show that
if in addition to elliptic curves as above, one allows irreducible nodal curves
with pa = 1, together with a fixed nonsingular point, the whole theory extends.
We consider families X/S where the fibers are elliptic curves or pointed nodal
curves (the point being chosen as a smooth point of the nodal curve). The
projective line P

1 acts as a coarse moduli space, taking j = ∞ for the nodal
curve. The family y2 = x(x−1)(x−λ) over the whole affine λ-line is a modular
family in which the values λ = 0, 1 correspond to nodal curves. The proofs
above all extend without difficulty, once we know the deformation theory of
the nodal curve, which we explain in the next remark.
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Remark 26.6.6 (Deformation theory of the nodal elliptic curve).
We consider a reduced irreducible curve C over k of arithmetic genus pa = 1
having one node as its singularity (such as the curve y2 = x2(x − 1) in P

2).
The tangent space Def(C) to its deformation theory fits in an exact sequence
(Ex. 5.7)

0→ H1(TC)→ Def(C)→ H0(T 1
C)→ H2(T 0

C).

There are no obstructions to deformations of C (Ex. 10.4), so the local defor-
mation space is smooth.

Since T 1
C is concentrated at the singular point, we know from the local

discussion of deformations of a node (14.1) that H0(T 1
C) is a 1-dimensional

k-vector space.
It remains to consider the sheaf TC . For a nodal cubic curve C in P

2 there
is an exact sequence

0→ TC → TP2 |C → NC/P2 → T 1
C → 0.

One sees easily that h0(TP2 |C) = 9, h0(NC/P2) = 9, h0(T 1
C) = 1. Further-

more, the natural map H0(NC/P2)→ H0(T 1
C) is surjective because the former

measures deformations of C as a closed subscheme of P
2, the latter measures

abstract deformations of the node, and it is easy to see that there are first-
order deformations of C in P

2 that give a nonzero element of T 1
C . From all

this it follows that h0(TC) ≥ 1.
Now let s ∈ H0(TC) be a nonzero section. Then we get an exact sequence

0 → OC
s→ TC → R → 0, where the cokernel R is of finite length. Further-

more, R is not zero, because TC
∼= Hom(Ω1

C ,OC) is not locally free, hence
not isomorphic to OC . Therefore (TC)∨ is properly contained in OC , and
by Serre duality on C, using the dualizing sheaf ωC

∼= OC , we find that
h1(TC) = h0((TC)∨) = 0.

Thus Def(C) is one-dimensional, and the miniversal deformation space of
C is smooth of dimension 1.

Finally, we compare the deformations of C to the deformations of the
pointed curve (C,P ), where P is a nonsingular point. We find, as in the case
of a smooth curve (26.1), that the two functors are isomorphic, so we conclude
that the deformations of (C,P ) are pro-representable of dimension 1. This is
all we need to complete the argument of (26.6.5).

Remark 26.6.7. One might ask, why do we use the nodal curve, but not the
cuspidal curve or any other connected reduced curve with pa = 1? One reason
is that any other singular curve besides the node has a local deformation
theory of dimension ≥ 2, (14.2.2), (Ex. 14.1), and so would not fit in a modular
family of elliptic curves.

Another reason is the presence of jump phenomena. Consider the family
y2 = x3 + t2ax+ t3b over the t-line, for any fixed values of a and b such that
4a3 +27b2 �= 0. Then for t �= 0 we have nonsingular elliptic curves all with the
same j-invariant, while for t = 0 we get a cuspidal curve. Thus the cuspidal
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curve cannot belong to a deformation theory having a coarse moduli space.
Another way of saying this is that if you try to add a point to the j-line
representing the cuspidal curve, that point would have to be in the closure of
every point on the j-line!

References for this section. I owe a special debt to Mumford’s article
[114] from the Purdue conference. That is where he first introduced the notion
of modular family, a precursor of the notion of a stack. The basic theory of
elliptic curves is treated in [57, IV, §4]. Other valuable sources are [21] and
[119].

Exercises.

26.1. Show that the functor F of families of (pointed) elliptic curves is not a sheaf
for the Zariski topology, by constructing a locally trivial but nontrivial family on a
triangle of lines, using an automorphism of order 2, as in (Ex. 23.2). Show, however,
that this family becomes trivial after a base extension by a finite étale morphism of
a hexagon onto the triangle. Hence this family is isotrivial (Ex. 25.1).

26.2. Show that each of the two fiberwise trivial families mentioned in the proof
of (26.2) becomes trivial after a finite étale base extension. Hence they are isotrivial.

26.3. We have seen (26.6.2) that there is a tautological family of elliptic curves
over the j-line minus the two points j = 0, 123. Show, nevertheless, that the functor
of families of elliptic curves with j �= 0, 123, is not representable.

26.4. Show that the functor of families of pointed elliptic curves is separated, but
is not complete (cf. definitions in §24).

26.5. Show that the λ-line with its family of elliptic curves y2 = x(x− 1)(x− λ)
is a coarse moduli space for the moduli problem of classifying pairs (X,α), where
X is an elliptic curve and α is an isomorphism of the group of 2-torsion points on
X with the Klein four-group V = Z/2Z ⊕ Z/2Z.

26.6. Referring to the classification of curves of genus 2 given in [57, IV, Ex. 2.2],
let U ⊆ A

3 be the open affine set of triples β1, β2, β3, all distinct and different from
0, 1, let G be the symmetric group Σ6 of six letters acting on U as described in
[loc. cit.], and let T be the quotient U/G. Show that T is a coarse moduli space for
curves of genus 2. According to [139], this moduli space has just one singular point,
corresponding to the curve y2 = x6 − x.

26.7. Show that P
1
k/ Spec k is a modular family for curves of genus zero.

26.8. Moduli of n points on a line. We consider the moduli problem whose
objects are n ordered points P1, . . . , Pn in P

1
k, not necessarily distinct, and where

two objects are equivalent if there is an automorphism of P
1 sending one to the

other.

(a) Show that if we limit our attention to objects containing at least three distinct
points, then the local deformation problem is pro-representable, the family is
bounded, and it has a modular family.
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(b) In the case n = 4, the moduli problem of (a) is covered by four open subsets
Ui, corresponding to objects where the three points except Pi are distinct. Show
that each of these Ui is isomorphic to a P

1, and they are glued together to form a
nonseparated scheme that is a P

1 with three doubled points. The doubled points
occur because, for example, the object where P1 = P2 is not separated from the
object where P3 = P4.

(c) In the case n = 5, consider the open set U where P1, P2, and P5 are distinct.
Then we can normalize points of U to the form 0, 1, x, y, ∞, so that U is
isomorphic to P

1 × P
1. Show that if we restrict our moduli problem to those

objects with no triple point, then the moduli space is a nonsingular projective
variety obtained from P

1×P
1 by blowing up the points (0, 0), (1, 1), and (∞,∞)

on the diagonal. This is a surface isomorphic to the Del Pezzo surface of degree 5
in P

5 [57, V, 4.7.1].
(d) Still in the case n = 5, show that if we add back the objects with a triple

point (there are 10 of them), they correspond in a nonseparated way to the 10
exceptional lines on the Del Pezzo surface. That is, the new nonseparated moduli
space can be described by blowing down each exceptional line and gluing the
original surface to the blown-down one along the complement of the line and its
blown-down point.

(e) Now, if you have courage (see [121] for details), show that for n odd, if we consider
only those objects having no point of multiplicity > n

2
, the corresponding moduli

problem is separated and complete, and in fact it is a projective variety. (For n
even, the situation is more complicated: there seems to be no natural restriction
on the objects that leads to a moduli space that is both separated and complete;
cf. the case n = 4 above.)

27. Moduli of Curves

It has been understood for a long time that there is some kind of moduli space
of curves of genus g ≥ 2. Riemann gave the dimension as 3g − 3. Transcen-
dental methods show that it is irreducible over the complex numbers. Fulton
extended this result for the coarse moduli scheme to characteristic p > 0, with
some restrictions on small p, by considering the Hurwitz scheme of branched
covers of P

1. Deligne and Mumford proved irreducibility in all characteris-
tics by introducing a compactification of the variety of moduli in which they
allowed certain singular “stable” curves. They also hinted at a more sophis-
ticated object, the moduli stack. Mumford, in his article “Picard groups of
moduli problems” [114], makes the point that to investigate the more subtle
properties of the moduli of curves, the coarse moduli space may not carry
enough information, and so one should really work with stacks.

Our purpose here is not to prove all of these results (for which there are
ample references); rather it is to disengage the issues involved, to explain why
we do things the way we do, and to make some precise statements. We will
make some remarks about stacks at the end of this section (27.7.1).

First we state the problem. We fix an algebraically closed field k, and we
consider projective nonsingular curves of genus g ≥ 2 over k. The restriction
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to g ≥ 2 is because (a) we have discussed the cases of g = 0, 1 separately, and
(b) the case of g ≥ 2 is qualitatively different in that curves of genus g ≥ 2
can have only finitely many automorphisms [57, IV, Ex. 5.2].

We want to describe isomorphism classes of these curves and families of
curves, so we define the moduli functor F , which assigns to each scheme S/k
the set of isomorphism classes of flat families X/S, proper over S, all of
whose geometric fibers are nonsingular curves of genus g. If this functor were
representable, we would call the corresponding scheme a fine moduli space.
But since there are curves with nontrivial automorphisms, we know (Ex. 23.2)
that the functor is not representable. On the other hand here is one of the
main results of the theory:

Theorem 27.1. The moduli functor F of curves of genus g ≥ 2 over k
algebraically closed has a coarse moduli space Mg, which is a normal quasi-
projective variety of dimension 3g − 3 having at most quotient singularities.

The existence and the fact that it is quasi-projective are proved in
Mumford’s book [119]; the irreducibility is proved in the article of Deligne
and Mumford [21]. Fulton [35] improved the proof of Deligne and Mumford,
making it purely algebraic.

The coarse moduli space is a variety whose closed points are in one-to-one
correspondence with the set of isomorphism classes of curves in a natural way.
Furthermore, for any flat family X/S, there is a morphism f : S → Mg with
the property that for each k-rational point s ∈ S, the image f(s) corresponds
to the isomorphism class of the fiber Xs. However, there is no tautological
family over Mg, and knowledge of Mg does not give us full information about
all possible flat families and morphisms between them.

To give more information about families of curves, we study modular
families, following the ideas of Mumford [114], as in §26. This will help us
understand flat families of curves “up to étale base extension.”

Theorem 27.2. For any g ≥ 2, the class of nonsingular projective curves of
genus g over k has a modular family.

Proof. On a curve of genus g, any divisor of degree ≥ 2g + 1 is nonspecial
and very ample. In particular, if we take the tricanonical divisor 3K, where K
is the canonical divisor, then for any g ≥ 2, its degree d = 6g − 6 is > 2g + 1,
so we can use it to embed the curve in a projective space P

n, with n = 5g−6,
as a nonsingular curve of degree d.

Now we consider the Hilbert scheme H of nonsingular curves of degree d
and genus g in P

n. Since the curves are nonspecial, the infinitesimal study of
the Hilbert scheme shows that H is smooth (Ex. 1.7) of dimension h0(N ) =
25(g − 1)2 + 4(g − 1). Of course H contains curves embedded by any divisor
of degree d, not only the tricanonical divisor 3K. One can show, however,
that the subset H ′ ⊆ H of tricanonically embedded curves, with the reduced
induced structure, is also smooth and of dimension 25(g − 1)2 + 3g − 4, since
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the choice of a divisor, up to linear equivalence, is an element of the Picard
scheme of C, which has dimension g.

The virtue of using the tricanonical embedding is that if two points of H ′

correspond to isomorphic curves of genus g, the isomorphism preserves the
tricanonical divisor, and so the two embeddings differ only by the choice of
basis of H0(OC(3K)). Thus the group G = PGL(n) acts on H ′, and the orbits
of this action are closed subsets of H ′ in one-to-one correspondence with the
isomorphism classes of curves. Note that G has dimension (n + 1)2 − 1 =
25(g − 1)2 − 1, so that the “orbit space,” if it exists, will have dimension
3g−3, as we expect. (At this point one can apply the techniques of geometric
invariant theory [119] to show that an orbit space does exist, as a quasi-
projective coarse moduli space. We follow a different route to get the existence
of the modular family.)

The next step is to consider a particular curve C, and choose a point
P ∈ H ′ representing it. The orbit of G containing P , being a homogeneous
space, is smooth, so we can choose a smooth, locally closed subscheme Z of
H ′ of dimension 3g − 3 passing through P and transversal to the orbit of G
at P . For example, Z could be the intersection of H ′ with a linear space in
some projective embedding, of complementary dimension to the orbit of G.
Replacing Z by a smaller open subset still containing P , we may assume that
for every orbit of G, whenever Z intersects that orbit, if at all, it intersects
in only finitely many points, and that the intersection is transversal at those
points. (The idea here is just to throw away points of Z where these properties
do not hold.) Since Z is contained inH ′ and inH, we can restrict the universal
family of curves on H to Z and obtain a flat family X/Z.

By construction, the given curve C occurs in the family X/Z, and also
by construction, any curve appears at most finitely many times. At a point
z ∈ Z, we consider the formal family induced byX over the complete local ring
R = ÔZ,z. We know that the local deformation functor of the corresponding
curve C is pro-representable and has a smooth universal deformation space of
dimension 3g − 3 with tangent space H1(TC) (18.3.1). A standard sequence
shows that H0(NC/Pn) → H1(TC) is surjective, and one sees easily that the
tangent space to Z maps surjectively also, and hence is isomorphic to H1(TC).
Since R and the deformation space of C are both smooth, and their tangent
spaces are isomorphic, they are isomorphic.

Thus the family X/Z satisfies the property (b) of a modular family (§26).
We still have to construct a family containing all curves of genus g. It is easy
to show that the image of G × Z in H ′ contains an open set. Since H ′ is
quasi-projective, a finite number of such open sets G×Zi will cover H ′. Thus
taking a finite disjoint union of such families Xi/Zi, we obtain a new family
X/Z satisfying also (a), which is the required modular family, and we see into
the bargain that Z may be taken to be quasi-projective.

For property (c), given a modular family X/Z and any other family X ′/S,
we consider the two families S × X and X ′ × Z over S × Z, and let S′ =
IsomS×Z(S × X,X ′ × Z). As in the case of elliptic curves (26.4) it follows
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that S′ → S is étale surjective, and that the two pulled-back families by the
morphisms S′ → S and S → Z are isomorphic.

Remark 27.2.1. As an application of modular families, we will show the
nonexistence of certain g1

d’s on a general curve of genus g. On a nonsingular
projective curve C, we denote by g1

d a linear system of degree d and dimen-
sion 1 without base points. A curve C has a g1

d if and only if it admits a
morphism C → P

1 of degree d. A curve with a g1
2 is called hyperelliptic; a curve

with a g1
3 is trigonal, and so on. One knows that whenever 2d− 2 ≥ g, every

curve of genus g has a g1
d (see for example [2, VII, 2.3]). We will show that

for g ≥ 3 a general curve of genus g is not hyperelliptic; for g ≥ 5, a general
curve of genus g is not trigonal, and so on. Of course one can give proofs
by construction in special cases [57, IV, 5.5.1ff]. For example, a nonsingular
plane quartic curve is a nonhyperelliptic curve of genus 3. But the examples
get more difficult as the numbers get bigger, and I think a few hours spent
trying to construct as many cases as you can will generate ample appreciation
for the general method.

Theorem 27.3. A general curve of genus g > 2d− 2 does not have a g1
d.

Proof. First of all, to explain the word “general,” what we will show is that
if π : X → S is a modular family of curves of genus g, then there is a dense
open subset U ⊆ S such that for every s ∈ U , the fiber Xs does not have a
g1

d for any d < 1
2g+ 1. If g = 1, the statement says that an elliptic curve does

not have a g1
1 . This is immediate, because a g1

1 would give a map of degree 1
to P

1, and an elliptic curve is not rational. So we may assume henceforth that
g ≥ 2.

If s ∈ S and the fiber Xs has a g1
d, let f : Xs → P

1 be the corresponding
morphism, and let Γs ⊆ Xs × P

1 be its graph. Then we consider the Hilbert
scheme H parametrizing subschemes Γ ⊆ X×P

1
S , flat over S, that are graphs

of morphisms. Since H is a quasi-projective scheme, its image in S is a con-
structible subset [57, II, Ex. 3.18, 3.19], so that if the theorem is not true,
there will be an open subset V ⊆ S contained in the image of H.

Looking at an irreducible component of H whose image contains V , there
is a corresponding subscheme Γ ⊆ π−1(V ) × P

1
S , and hence an invertible

sheaf L on π−1(V ) and sections t0, t1 of L corresponding to the g1
d on each

fiber.
Now let C be one of these fibers, and let f : C → P

1
k be the morphism

given by the g1
d. We write the sequence of differentials

0→ f∗Ω1
P1 → Ω1

C → R→ 0,

where R is the ramification sheaf, which is also the sheaf of relative differentials
Ω1

C/P1 . Dualizing we get

0→ TC → f∗TP1 → R′ → 0,
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where R′ is the torsion sheaf Ext1(R,OC), which is also T 1
C/P1 (3.5), (Ex. 3.4).

This gives a sequence of cohomology

0→ H0(TC)→ H0(f∗TP1)→ H0(R′)→ H1(TC)→ H1(f∗TP1)→ 0.

Here H0(TC) = 0, since g ≥ 2, and one can identify H0(R′) with the tangent
space to the deformations of the pair (C, f) described in (24.10.3). Indeed,
since C is affine over P

1, the deformations of C as a P
1-scheme are just T 1

C/P1

by (5.1) and (5.2).
Since our g1

d extends over the whole neighborhood V in S by hypothesis,
we conclude that the map H0(R′) → H1(TC) must be surjective; hence
H1(f∗TP1) = 0. Now TP1 = O(2), so f∗TP1 corresponds to the divisor 2D,
where D is the divisor of the g1

d. In other words, H1(OC(2D)) = 0. Further-
more, since dim |D| ≥ 1, it follows that dim |2D| ≥ 2. Then by Riemann–Roch,

h0(O(2D)) = 2d+ 1− g ≥ 3,

and hence g ≤ 2d− 2.
Therefore, by contradiction, we find that for g > 2d−2, the general curve of

genus g has no g1
d. This argument justifies the proofs “by counting parameters”

used by the ancients.

Remark 27.3.1. What is the relation between the modular family X/Z and
the coarse moduli space M? One would like to divide Z by the equivalence
relation of having isomorphic fibers. So let Z ′ = IsomZ×Z(X × Z,Z × X).
Then Z ′ → Z×Z expresses this relation. Unfortunately, since the curves may
have automorphisms, Z ′ is not a subscheme of Z×Z, so this is not a scheme-
theoretic equivalence relation. If, however, we restrict to g ≥ 3 and consider
only those curves having no automorphisms, then Z ′ will be a subscheme of
Z × Z, étale over Z by both projections, and the quotient will exist as an
algebraic space (27.7.1).

To show that the coarse moduli Mg of all curves of genus g is a quasi-
projective scheme requires more work, which we do not discuss here.

Remark 27.3.2. To compactify the variety of moduli, Deligne and Mumford
[21] introduce stable curves. They show then that stable curves behave like
nonsingular curves in the theory above. In particular, (27.2) holds also for
families of stable curves, and there is a coarse moduli space for stable curves,
which they show to be projective and irreducible. The following results give
the definition and main properties of stable curves.

Proposition 27.4. Let X be a reduced, connected, projective curve having at
most nodes as singularities. Let TX = Hom(Ω1

X ,OX) be the tangent sheaf of
X. Then the following two conditions are equivalent:

(i) pa(X) ≥ 2 and if C is any irreducible component of X with pa(C) = 0,
then C meets X − C in at least three points.

(ii) H0(X,TX) = 0, i.e., X has no infinitesimal automorphisms.
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Definition. A curve satisfying the equivalent conditions of (27.4) is called
stable.

Lemma 27.5. Let X be a reduced curve with at most nodes as singularities,
and let Z denote the set of nodes (with the reduced induced scheme structure).
Then there are natural exact sequences

0→ OZ → Ω1
X → ωX → OZ → 0

and
0→ ω∨

X → TX → OZ → 0.

Proof. The second sequence follows by dualizing the first, so we have only
to prove the first. To construct the natural map Ω1

X → ωX , we embed X in
a nonsingular variety P (such as projective space), with ideal sheaf I. Then
there is an exact sequence

I/I2 d→ Ω1
P ⊗OX

π→ Ω1
X → 0

[57, II, 8.12]. Say P has dimension n. Then X is a local complete intersection
scheme, so I/I2 is locally free of rank n− 1 on X. The map d is injective at
nonsingular points of X [57, II, 8.17], which are dense in X, so it is injective
everywhere. We define the map

n−1∧
(I/I2)⊗Ω1

X → Ωn
P ⊗OX

by sending
(f1 ∧ · · · ∧ fn−1)⊗ w �→ df1 ∧ · · · ∧ dfn−1 ∧ w′,

where w′ is any lifting of w to Ω1
P ⊗OX . The map is well-defined, since two

liftings differ by something in I/I2. Now tensoring with the invertible sheaf∧n−1(I/I2)∨ we get

Ω1
X → Ωn

P ⊗OX ⊗
n−1∧

(I/I2)∨,

and the right-hand side is just the dualizing sheaf ωX by [57, III, 7.11]. This
map is an isomorphism at nonsingular points of X [57, III, 7.12], so its kernel
and cokernel will be supported at the singular points.

To find the kernel and cokernel is a local question at each singular point,
and since a node is analytically isomorphic to the curve xy = 0 in A

2, we can
make a local analysis using this curve.

When X ⊆ A
2 is the curve defined by xy = 0, we find that Ω1

X is generated
by dx and dy with the relation x dy + y dx = 0. The sheaf I/I2 is generated
by f = xy, and Ω2

A2 is generated by dx ∧ dy. The map described above
sends
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f ⊗ dx �→ df ∧ dx = −x dx ∧ dy,
f ⊗ dy �→ df ∧ dy = y dx ∧ dy.

Thus the cokernel is one-dimensional. The kernel will be the torsion submodule
of Ω1

X , which is also one-dimensional, generated by x dy = −y dx. This gives
the required sequence of (27.5).

Lemma 27.6. If X is a reduced curve that is a union X = C ∪ D of two
curves C and D meeting transversally at a finite set of nodes S, then TX

∼=
(IS,C ⊗ TC)⊕ (IS,D ⊗ TD).

Proof. As before, the question is local around each node, so we take X to
be the curve xy = 0 in A

2, with C = Spec k[x] and D = Spec k[y]. Now
TX = Hom(Ω1

X ,OX) is generated by two elements

a :

{
dx �→ x

dy �→ 0
and b :

{
dx→ 0
dy → y

and as an OX -module, it is the direct sum of the submodules generated by a
and b. Restricting to C and D, the first generator is x times the generator of
TC that sends dx �→ 1, and similarly, the second is y times the generator of
TD. Hence TX = xTC ⊕ yTD, as required.

Proof of (27.4).

Case 1. X is irreducible. Then we have only to show that pa(X) ≥ 2 ⇔
H0(TX) = 0.

If pa(X) = 0, then X ∼= P
1 and h0(TX) = 3.

If pa(X) = 1, then X could be a nonsingular elliptic curve, or a rational
curve with one node. In the first case TX = OX and h0(TX) = 1. In the second
case, by Lemma 27.5 we have

0→ OX → TX → k → 0

and h0(TX) ≥ 1. (In fact, it follows from (26.6.6) that h0(TX) = 1.)
If pa(X) = g ≥ 2, then from the sequence

0→ ω∨
X → TX → OZ = 0,

where Z is the set of nodes, we see that the degree of TX is 2−2g+z, where z
is the number of nodes. But z ≤ g, so the degree of TX is ≤ 2−g, with equality
only in the case of a rational curve with g nodes. In the case of strict inequality,
the degree of TX is negative, so it cannot have global sections. In the case of
equality, deg TX = 0, so if it had a section, it would be isomorphic to OX .
But this is impossible, because TX is not locally free at the nodes. Thus in
any case h0(TX) = 0.
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Case 2. X reducible. Because of Lemma (27.6), h0(TX) �= 0 if and only if
for some irreducible component C, we have h0(IS ⊗ TC) �= 0, where S =
C ∩ (X −C). If pa(C) ≥ 2, this cannot happen by Case 1. If pa(C) = 1, then
h0(TC) = 1, but there must be at least one point in S, since pa(X) ≥ 2. The
nonzero section of TC is nowhere vanishing on the smooth points of C, so it
cannot be in IS ⊗ TC . If pa(C) = 0, then C ∼= P

1 and h0(IS ⊗ TC) �= 0 if and
only if S consists of at most two points.

The following result shows that from the point of view of deformation
theory, stable curves behave like nonsingular curves.

Proposition 27.7. Let X be a stable curve of (arithmetic) genus g ≥ 2. Then
the functor of local infinitesimal deformations of X is pro-representable by a
regular complete local ring of dimension 3g − 3.

Proof. The functor is pro-representable because X is projective and satisfies
the critical condition H0(X,TX) = 0(18.3). The local ring representing it is
regular because there are no obstructions to deforming X (Ex. 10.4). Since
the ring is regular, to find its dimension we need only compute its tangent
space Def(X/k), and by (Ex. 5.7) this belongs to an exact sequence

0→ H1(X,TX)→ Def(X/k)→ H0(X,T 1
X)→ 0,

there being no H2 on a curve. Let δ be the number of nodes in X. From
(Ex. 3.1), we see that T 1

X is just k at each node, so the right-hand term
contributes δ to the dimension. On the other hand, from the exact sequence
of (27.5), and the fact that H0(TX) = 0, we find that H0(ω∨

X) = 0 and we
obtain an exact sequence

0→ H0(OZ)→ H1(ω∨
X)→ H1(TX)→ 0.

Since H0(ω∨
X) = 0, we obtain H1(ω∨

X) = 3g− 3 by Riemann–Roch. The term
H0(OZ) is δ, so h1(TX) = 3g − 3 − δ. Adding to the above, we find that
dim(Def(X/k)) = 3g − 3 as required.

Remark 27.7.1 (The idea of stacks). The study of families of elliptic
curves that we have described in detail (§26), and its generalization to modular
families of curves of genus g for any g ≥ 2, can be formalized so as to give rise
to the theory of stacks. Here we will give a brief introduction to the concepts
that make up the theory of stacks. For the technical details, the reader will
have to consult another source, such as the article of Vistoli [167], who explains
in one hundred pages what I will barely indicate in four or five.

The problem is still to find an appropriate moduli space to explain a class
of objects one wishes to classify (e.g., curves of genus g) together with the
structure of families of these objects. We have seen how a moduli problem
gives rise to a functor: in the case of curves of genus g, the functor F assigns
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to each scheme S the set of isomorphism classes of families of curves of genus g
over S, that is, smooth proper morphisms X → S whose geometric fibers are
all curves of genus g. If the functor is representable, then one has a fine moduli
space. Even if it is not representable, one can sometimes approximate it by a
coarse moduli space, which at least tells us the isomorphism classes of curves
over a field, but which does not give a satisfactory answer to the problem of
describing all possible families of curves.

Now it often happens, as it does in this particular case, that the functors
describing moduli problems we are interested in are not representable, at least
not by any scheme. So we search for some object, some structure more general
than a scheme that will satisfy our needs. We could, of course, say that the
functor itself carries all the information we want. But that is too big an object,
too nebulous. We want something more concrete, more geometric, which we
can deal with as a sort of “generalized scheme.”

A first step in this direction is to realize that we should begin to think of
étale maps as generalized open neighborhoods. We have already said that our
study seemed to describe a moduli space “up to étale covers.” To make this
more precise, recall that a scheme is constructed out of affine schemes by gluing
together along isomorphisms defined on (Zariski) open subsets. What happens
if we try to glue schemes together along étale maps? Imagine a collection of
schemes {Ui}, and for each i, j étale morphisms Vij → Ui and Vji → Uj and
isomorphisms ϕij : Vij → Vji, satisfying a cocycle compatibility condition for
each i, j, k. We try to glue the Ui along the isomorphisms ϕij . Another way of
saying this is to let U be the disjoint union of the Ui, and let R ⊆ U×U be the
equivalence relation defined by the ϕij . Then we seek a quotient U/R of U by
this equivalence relation. This may not exist in the category of schemes, but
it is an algebraic space. An algebraic space is defined to be the quotient of a
scheme U by an equivalence relation R ⊆ U×U , where R is a subscheme étale
over U by both projections. The theory of algebraic spaces was developed by
Artin and Knutson in the 1970s [85], and they showed that algebraic spaces
form a reasonable category, enlarging the category of schemes, to which much
of the language and theorems of schemes can be extended. Some functors that
were not representable in the category of schemes may become representable
in the category of algebraic spaces, and in any case, it is usually easier to show
that something is an algebraic space than to show that it is a scheme. For
example, those nonalgebraic complex analytic spaces called Moishezon spaces
[57, Appendix B] can be realized as algebraic spaces.

The second and essential step is to acknowledge that the functor of sets of
isomorphism classes of objects is itself deficient in that it does not keep track
of morphisms between families, and in particular the automorphisms that
objects or families may have. So instead of the functor F described above,
which to each scheme S assigns the set of isomorphism classes of families
X → S (of curves of genus g, for example), we consider a new object F , like a
functor, but to each scheme S it assigns the category F(S) of families X → S
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and isomorphisms between such families. This new object F is called a fibered
category over the category of schemes.

In the case of the functor F , we saw that a necessary condition that it
should be representable is that it be a sheaf (23.5). This means that given a
scheme S and an open covering {Ui} of S, the map of sets

F(S)→ ΠF(Ui) ⇒ ΠF(Ui ∩ Uj)

is exact: (a) the first arrow is injective, and (b) its image is equal to the set
of elements in the middle whose two images on the right are equal.

The sheaf axiom for the functor F is now replaced by a new analogous
property for the fibered category F , the stack axiom, which is as follows.
For any scheme S, and any étale covering {Ui}, that is, étale maps Ui → S
that are collectively surjective, consider the restriction functors

F(S)→ ΠF(Ui) ⇒ ΠF(Ui ×S Uj)
−→⇒ ΠF(Ui ×S Uj ×S Uk).

(Note that we must write Ui ×S Uj instead of Ui ∩ Uj because the Ui are no
longer subsets of S.) The sheaf properties (a) and (b) now look like this.

(a) The first arrow is injective. This means that if a, b ∈ F(S), and if
we denote their restrictions to F(Ui) by ai, bi, and if for each i there are
isomorphisms ϕi : ai → bi such that for each i, j, the isomorphisms ϕi, ϕj

restrict to the same isomorphism of aij and bij on Ui ×S Uj , then there is a
unique isomorphism ϕ : a→ b inducing ϕi on each Ui. (Note how equality of
elements in a set has been replaced by isomorphism of objects in a category.)

(b) The sequence is exact at the first middle term. This now says that if
we are given objects ai ∈ F(Ui) for each i and isomorphisms ϕij : ai → aj on
Uij (= Ui ×S Uj) satisfying a cocycle compatibility condition on each Uijk,
then there exists a (unique) object a ∈ F(S) restricting to each ai on Ui.

A Deligne–Mumford stack is a fibered category F satisfying the stack
axiom above, and such that there exists a scheme X and an étale surjective
morphism hX → F from the functor associated to X to F . An Artin stack is
the same, but requires only that hX → F be smooth. (I omit some technical
conditions of quasi-compactness, locally of finite presentation, finiteness of the
diagonal, etc.)

With this definition, it is not yet obvious that a scheme, or an algebraic
space, is a stack. To verify the stack axiom, one needs theorems saying that
all kinds of data given on an étale covering {Ui} of a scheme S, such as quasi-
coherent sheaves, or families of schemes over the Ui, glue together to give
similar objects over S. This collection of results, which are well established,
is called descent theory (23.5.2).

When all this has been done, one shows that the variety of moduli of
curvesMg is a Deligne–Mumford stack, for any g ≥ 2. The remarkable thing
is that although the sheaf axiom fails for the functor F , the stack axiom,
apparently more complicated, actually holds for the fibered category F of
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families of curves. In their fundamental paper [21], Deligne and Mumford
introduced stacks for the first time, and showed that one can extend much
of the terminology and results of schemes to this larger category. By also
compactifying the stackMg using stable curves, they were able to prove that
it is irreducible in all characteristics.

Even though stacks were not mentioned there, many of the basic ideas
appear in Mumford’s earlier paper [114], where he discusses the modular
families that we have described above. Indeed, the existence of the modu-
lar family, when translated into the language of stacks, is just the state-
ment that there is a scheme X together with a surjective étale morphism
hX →Mg.

References for this section. Mumford [119] contains the proofs of exis-
tence of coarse moduli spaces. Deligne and Mumford [21] establish the
irreducibility of the compactification of the moduli space and introduce the
language of stacks (see also [35]). Mumford [114] explains the motivation
behind the theory of stacks. Further introductions to stacks are in [165], [37],
[93], and [32]. I would also like to thank Barbara Fantechi for explaining the
whole theory of stacks to me in the short space of two hours.

Exercises.

27.1. Using the existence of a modular family, show that any fiberwise trivial
family of curves of genus g becomes trivial after a surjective étale base extension.
In other words, it is locally isotrivial.

27.2. The coarse moduli space M3 of nonsingular curves of genus 3 is irreducible.
To show this, proceed in the following steps (cf. Ex. 8.8e).

(a) For any g, show that the following conditions are equivalent.
(i) The coarse moduli space Mg is irreducible.
(ii) For any modular familyX → S of curves of genus g, and any two nonempty

saturated open subsets U, V ⊆ S, the intersection U ∩ V is nonempty.
Here saturated means that for every point x (in U or V ), that open set
also contains all the points equivalent to it under the equivalence relation
defined by x ∼ y if there is an isomorphism between the geometric fibers
over the points x and y.

(iii) Whenever X1 → T1 and X2 → T2 are families of curves of genus g, with
T1, T2 integral schemes of finite type over k, and there exist points t1 ∈ T1,
t2 ∈ T2 for which the maps of the induced families X̂i over the complete
local rings ÔTi,ti give rise to surjective maps of Spec ÔTi,ti to the universal
deformation space of the fiber, then there exist points u1 ∈ T1 and u2 ∈ T2

for which the geometric fibers of Xi over ui are isomorphic.
If these conditions hold, we will also say that the moduli problem Mg is irre-
ducible.

(b) For the special case g = 3, show that any curve C is either hyperelliptic or
isomorphic to a nonsingular plane quartic curve.
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(c) Show that there is a family X1/T1 with T1 irreducible of dimension 5 containing
all hyperelliptic curves.

(d) Show that there is a family X2/T2 with T2 irreducible of dimension 14 that
parametrizes the nonsingular plane quartic curves.

(e) If X → S is a modular family, then S is nonsingular of dimension 6.
(f) Now combine the above to show that M3 is irreducible.

27.3. Make a list of all possible types of stable curves of genus 2. (I found nine
types, including the nonsingular one). Compute the dimension of each family of
singular stable curves and thus show that they are all limits of families of nonsingular
curves. Note: We will see later that every stable curve is a limit of nonsingular curves
(29.10.1).

27.4. If T is a nonsingular curve, 0 ∈ T a point, and X ′ a family of smooth
projective curves of genus g ≥ 2 defined over T\{0}, show that one can complete
X ′ to a family X/T whose fiber X0 is a stable curve of genus g (possibly after a
base change T ′ → T ). This will show that the functor of nonsingular and stable
curves of genus g is complete. Hints: As in (Ex. 24.9), first complete X ′ to a family
X/T , where now T is a projective curve and X is a projective surface. Resolve the
singularities of X. Then resolve the singularities of the singular fibers so that they
have only normal crossings [57, V, 3.9]. (If there were multiple fibers, one should
first make a ramified base change on T to remove them.) Now the only problem
is that the fiber X0 may have smooth rational components meeting the rest of the
fiber in only one or two points. Those that meet the rest in only one point have self-
intersection −1, so they can be blown down to smooth points of a new X. Those
that meet the remainder in 2 points are more troublesome. If there is just one, it
blows down to an ordinary normal double point of the surface and the new fiber
still has normal crossings there. If there is a chain of these −2 curves it blows down
to what is called a rational double point of type An for some n. In this way we get
a fiber that is a stable curve.

28. Moduli of Vector Bundles

On a fixed scheme X, let us consider the family of all vector bundles (i.e.,
locally free sheaves). For given numerical invariants (rank, degree, Chern
classes, . . . ) we would like to find a moduli space parametrizing isomorphism
classes of these vector bundles. We have already seen some obstacles to reali-
zing this hope: the family of vector bundles may not be bounded (Ex. 24.3),
and there are jump phenomena (Ex. 2.3). So in general we cannot expect to
find even a coarse moduli space.

To remedy this situation, in his talk to the International Congress of
Mathematicians in 1962 [113], Mumford introduced the notion of a stable
vector bundle on a curve, and announced the theorem that stable bundles
of given rank and degree on a nonsingular projective curve are parametrized
by a quasi-projective coarse moduli space. Since then, Mumford’s definition
has been extended to varieties of higher dimension, and one knows that a
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coarse moduli space for stable vector bundles exists under quite general hypo-
theses. This space can be compactified by allowing certain equivalence classes
of semistable torsion-free sheaves.

Our purpose in this section is not to prove these results, but rather to try
to understand the significance of the condition of stability (whose definition
itself gives little insight), and at the same time to illustrate the general notions
of moduli spaces that we have been discussing in this chapter. Therefore we
will focus our discussion on vector bundles on curves.

For the rest of this section X will denote a nonsingular projective curve of
genus g over an algebraically closed field k. A vector bundle is a locally free
sheaf E on X. We denote its rank by r, and its degree (which is the degree of
the line bundle

∧r E) by d. We define the slope of E to be μ(E) = d/r.

Definition. A vector bundle E on the curve X is stable if for every subsheaf
F ⊆ E with 0 < rankF < rank E we have

μ(F) < μ(E).

If the inequality ≤ holds for all F , we say that E is semistable. We say that
E is unstable if it is not semistable. Recall also that E is simple if the only
endomorphisms of E are constants, i.e., H0(X, End(E)) = k. We say that E
is indecomposable if E cannot be written as a direct sum of bundles of lower
rank.

Lemma 28.1. For a bundle E on a curve X,

(a) E stable ⇒ E semistable.
(b) E stable ⇒ E simple.
(c) E simple ⇒ E indecomposable.

Proof. (a) is trivial. To prove (b), assume that E is stable, and suppose there
were an endomorphism ϕ : E → E that was not a scalar multiple of the
identity. Choose a point x ∈ X and consider the action of ϕ on the finite-
dimensional k-vector space E ⊗ k(x). Since k is algebraically closed, there is
an eigenvector v ∈ E⊗k(x) with ϕ(v) = λv for some λ ∈ k. Then the morphism
ψ = ϕ− λ · idE is an endomorphism of E whose image F = ψ(E) is not equal
to E . Therefore ψ has a kernel, the rank of ψ must be less than the rank of E ,
and so 0 < rankF < rank E . Now by stability, since F is a subsheaf of E ,
it follows that μ(F) < μ(E). But also F is a quotient of E , so μ(F) > μ(E)
(Ex. 28.2), which is a contradiction.

(c) If E is decomposable, say E ∼= E1 ⊕ E2, then the projection onto either
factor shows that E is not simple.

Proposition 28.2. The set of indecomposable bundles of rank r and degree d
on a curve X is a bounded family.



190 4 Global Questions

Proof. We use induction on the rank r.
If r = 1, we are dealing with line bundles L of degree d. To show that

they form a bounded family, we apply (24.4): it is sufficient to find a uniform
m0 such that every L of degree d is m0-regular with respect to some fixed
projective embedding of X. Since X is a curve, we need only show H1(L(m0−
1)) = 0, and this will happen as soon as degL(m0 − 1) > 2g − 2. Since
degL(m0 − 1) = d + (m0 − 1) · degX, we see that for m0 sufficiently large,
depending only on degX, g, and d, all line bundles L of degree d will be
m0-regular. Hence they form a bounded family.

Now consider a bundle E of rank 2. We look for sub-line bundles L ⊆ E .
In order for L to be a sub-line bundle of E we need h0(E ⊗ L−1) �= 0. Let
d = deg E and d1 = degL. Then deg(E ⊗L−1) = d− 2d1. By Riemann–Roch,
χ(E ⊗ L−1) = d − 2d1 + 2(1 − g). As soon as this number is positive, i.e.,
2d1 < d + 2(1 − g), the sheaf E ⊗ L−1 will have a section, and we have an
inclusion L ⊆ E . If the quotient E/L has torsion, we pull it back to L, so
by increasing L we may assume that the quotient M = E/L is another line
bundle. Then there is an exact sequence

0→ L → E →M→ 0.

This determines an element ξ ∈ Ext1(M,L) = H1(L⊗M−1), which must be
nonzero, since E is indecomposable. Therefore deg(L⊗M−1) = 2d1− d must
be ≤ 2g − 2, so 2d1 ≤ d+ 2g − 2.

Thus we see that if we now let L be a sub-line bundle of maximum degree
of E , then its degree d1 must satisfy

d− 2g ≤ 2d1 ≤ d+ 2g − 2.

Thus there is only a finite number of possible values for d1 and hence also a
finite number of possible values for degM = d − d1. By the induction step,
the families of such L andM are bounded, so there is a universal m0 making
them m0-regular, and this implies also that E is m0-regular, and so the family
of E ’s is bounded.

We leave to the reader the case of rank r ≥ 3 (Ex. 28.4).

Corollary 28.3. The families of stable bundles or simple bundles of given
rank and degree are bounded. (For semistable bundles, see (Ex. 28.5).)

Proof. Follows from (28.1) and (28.2).

Remark 28.3.1. In trying to create a moduli space for vector bundles, the
results just proved show that at least the obstacle of boundedness is overcome
by restricting to indecomposable bundles. In fact, all that is required is some-
thing less than that—some way of limiting the possible degrees of sub-line
bundles of maximum degree.

To go further, we need something more. We have seen that the functor
of local deformations is pro-representable for simple vector bundles (19.2).
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So now we study simple vector bundles on X, and we will show that there is
an analogue of the modular families of curves we saw in §§26, 27. One problem
is that a simple vector bundle still has automorphisms by scalar multiplication.
To eliminate these, as in the case of line bundles, we fix a point P ∈ X, and
let σ : S → X × S be the section sending S to {P} × S. Then we consider
families of vector bundles E of rank r and degree d on X × S together with
a given isomorphism θ : σ∗(

∧r E) ∼→ OS . Note that over the algebraically
closed field k, or over an Artin ring over k, the functor of isomorphism classes
of pairs (E , θ) is equivalent to the functor of isomorphism classes of bundles
E . Thus the local pro-representability is the same.

Theorem 28.4. On the curve X, the problem of classifying families of pairs
(E , θ) up to isomorphism, where E is a locally free sheaf on X × S of rank
r and fibers that are simple of degree d, together with an isomorphism θ :
σ∗(
∧r E) ∼→ OS, where σ : S → P × S is a section, has a modular family (in

the sense of §26).

Proof. Our first step is to construct a family of vector bundles of rank r and
degree d, forgetting θ, that contains each isomorphism type a finite number
of times. We know that the family is bounded (28.3), so we can find an m0

such that all our bundles E are m0-regular. Then E(m0) will be generated by
global sections, and h0(E(m0)) = N will be independent of E . Thus each E in
our family can be written as a quotient ON

X → E(m0) → 0. We consider the
Quot scheme (24.5.2) of all such quotients having the Hilbert polynomial of
a rank r degree d vector bundle twisted by m0. Among these, the locally free
quotients form an open set, so the Quot scheme contains all of our bundles.
The same bundle will occur many times, depending on the choice of basis
of H0(E(m0)). The group GL(N) acts on the set of quotients by changing
the map ON

X → E(m0) → 0, and two quotients ON → E1(m0) → 0 and
ON → E2(m0) → 0 correspond to isomorphic bundles E1 ∼= E2 if and only if
they differ by an element of GL(N). Our Quot scheme is nonsingular, because
the obstructions lie in H1(Hom(Q, E(m0))), where Q = ker(ON → E(m0))
(7.2), and this vanishes because of an exact sequence in which H1(E(m0)) = 0
and H2(Hom(E , E)) = 0 on the curve X.

Thus we are in a situation similar to the one in the proof of (27.2) for
moduli of curves. We have a smooth Quot scheme containing all of our bundles,
and the equivalence classes are described by orbits of the group action by
GL(N). For any particular point, we take a linear space section of comple-
mentary dimension to the orbit in an ambient space and in this way, using a
finite number of these, as in the proof of (27.2) we obtain a smooth parameter
space S and a universal family ON

X×S → E(m0) → 0 on X × S such that
(untwisting by m0) every isomorphism type of simple bundle E of rank r and
degree d is represented a finite number of times in the family.

To get our modular family, we need to add the isomorphisms θ. If we
take the family E on X × S constructed above, then σ∗(

∧r E) will be an
invertible sheaf on S. Since it is locally free, we can take a cover of S by
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Zariski open sets Ui on which it is free, and on each Ui fix an isomorphism
θi : σ∗(

∧r E)|Ui
→ OUi

. Now replace the earlier S by the disjoint union of the
Ui, call it S (by abuse of notation), and then we have the desired family E on
X × S together with θ : σ∗(

∧r E) ∼→ OS .
By construction, as in the proof of (27.2) we see that for each point s of

S, the induced formal family over ÔS,s pro-represents the local deformation
functor.

It remains to establish the universal property of this family, point (c) in
the definition of a modular family in §26, and to do this we need a lemma
giving a result analogous to the Isom functor for schemes (24.10.2).

Lemma 28.5. Let S be a scheme of finite type over k, let E1 and E2 be
two families of vector bundles of rank r and degree d on X × S, together
with isomorphisms θi : σ∗(

∧r Ei) → OS. Then there is a scheme S′ =
IsomX×S((E1, θ1), (E2, θ2)) of finite type over S and an isomorphism ϕ :
E1 ×S S′ → E2 ×S S′ on X × S′, compatible with the θi and the identity
on OS′ , and S′ is universal with this property. In other words, S′ represents
the functor of isomorphisms of pairs (E , θ).

Proof. Since S is of finite type, we can choose an m0 such that the fibers of
E1 and E2 are all m0-regular. Then, letting π : X × S → S be the projection,
π∗(E1(m0)) and π∗(E2(m0)) will both be locally free of the same rank N on S.
Any morphism f : E1 → E2 determines a map π∗f of these sheaves on S, and
furthermore, f is uniquely determined by π∗f , since the Ei(m0) are generated
by global sections.

Now a morphism of π∗(E1(m0)) to π∗(E2(m0)) is locally given on S by an
N × N matrix. Globally, these morphisms are given by an affine scheme of
relative dimension N2 over S, namely

V = V(Hom(π∗(E1(m0))), π∗(E2(m0))).

Any map ϕ : π∗(E1(m0))→ π∗(E2(m0)) determines a map

π∗ϕ : π∗π∗(E1(m0))→ π∗π∗(E2(m0))

and thence by composition to E2(m0). The condition that it should descend
to a map f : E1(m0) → E2(m0) is that it kill the kernel of π∗π∗(E1(m0)) →
E2(m0). This is an algebraic condition that determines a closed subscheme of
V. For a morphism f : E1 → E2 to be an isomorphism, we need its cokernel to
be zero. This is an open condition on f . Compatibility with θ1, θ2 is another
closed condition. In this way we arrive at the desired Isom scheme.

Proof of (28.4), continued. Let E , θ on X × S be the family constructed
above. Let E ′, θ′ be any family on X×S′ for some other scheme S′. We imitate
the proof of (26.4). We get two families by extending (E , θ) and (E ′, θ′) to
S × S′. Let S′′ be the Isom scheme of these two families given by (28.5).
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Then for each s′ ∈ S′, let E ′s′ be the fiber. There are only finitely many points
s ∈ S having an isomorphic fiber, by construction of the family E on X × S.
Furthermore, for each of those, there are only finitely many ways of writing
an isomorphism between those bundles compatible with the θi, namely, scalar
multiples by rth roots of unity. Hence there are only finitely many points of
S′′ lying over s′ ∈ S′. Now as in the proof of (26.4) it follows that S′′ → S′ is
étale.

Remark 28.5.1. Having now a modular family for simple vector bundles, we
can get a coarse moduli space, at least as an algebraic space (27.3.1), or as
a complex manifold if k = C [123, p. 544]. However, it will in general not be
separated, as we will see by example (28.7.1). In order to get a quasi-projective
moduli space, one needs the condition of stability. We will not explain that
proof using geometric invariant theory; we will only show how the condition
of stability at least makes the moduli problem separated (§24):

Proposition 28.6. Let T be a nonsingular curve, 0 ∈ T a point, and let E and
E ′ be two families of vector bundles of rank r and degree d on X, parametrized
by T , such that for each point t �= 0 in T , the fibers Et and E ′t are isomorphic.
Assume that the two fibers E0 and E ′0 are both stable. Then E0 ∼= E ′0.

Proof. Since Et and E ′t are isomorphic for each t �= 0, the function
h0(Hom(Et, E ′t)) is nonzero at all points of T different from 0. This func-
tion is upper semicontinuous on T [57, III, 12.8], so we conclude that there is
a nonzero homomorphism f : E0 → E ′0. If f is not an isomorphism, then since
E0 and E ′0 have the same rank and degree, f must have a kernel. This kernel
is locally free, so rank f < r. Let F = Im f . Because F is a quotient of E0, its
slope μ(F) is greater than d/r. But F is also a subsheaf of E ′0, so μ(F) < d/r.
This is a contradiction. (By the way, it would have been enough to assume
that one of E0, E ′0 is stable and the other semistable.)

If we allow semistable bundles, then the family of stable and semistable
bundles is also complete (§24). This is a theorem of Langton [91] in general.
We give a proof only in the case of rank 2 bundles on a curve, to highlight
the ideas more clearly.

Proposition 28.7. Let T be a nonsingular curve, 0 ∈ T a point, and let
T ′ = T − {0}. Suppose we are given a family E ′ of rank 2 bundles on X × T ′

such that for every t ∈ T ′, the fiber E ′t is semistable. Then there exists a family
E on X × T with E0 semistable and E|T ′ ∼= E ′.

Proof. For any rank 2 bundle E on X we introduce the stability degree δ(E)
as follows. Let L ⊆ E be a sub-line bundle of maximum degree, letM = E/L,
and let δ(E) = degM− degL. Then by definition, δ(E) > 0 if and only if E
is stable, and δ(E) ≥ 0 if and only if E is semistable.

Returning to the situation of the proposition, suppose E ′ is given on X×T ′

with E ′t semistable for all t ∈ T ′. One knows that E ′ can be extended (in many
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ways) to a coherent sheaf E on X × T . Furthermore, taking double duals, we
may assume that E is locally free, hence is a family of vector bundles over
T . Among all such locally free extensions E of E ′, choose one for which the
stability degree δ(E0) of the fiber at 0 is maximum. (Such a maximum exists,
because in any case δ(E0) ≤ 2g; cf. proof of (28.2).) If δ(E0) ≥ 0, we are done.

If not, δ(E0) < 0, and we proceed by contradiction. We then have an exact
sequence

0→ L0 → E0 →M0 → 0, (10)

where L0 is a sub-line bundle of maximum degree, and degL0 > degM0.
Consider the composed map E → E0 → M0, and let F be the kernel of
E → M0. Then F is another locally free extension of E ′ to X × T , and one
sees easily that its closed fiber F0 belongs to an exact sequence

0→M0 → F0 → L0 → 0. (11)

By choice of E , we know that δ(F0) ≤ δ(E0) < 0, so F0 must be unstable.
Therefore F0 has a sub-bundle N0 of rank 1 with degN0 ≥ degL0 > degM0.
Hence the composed map N0 → L0 is nonzero, and must be an isomorphism
by reason of degree. Thus the exact sequence (11) splits.

This sequence (11) is determined by an element ξ ∈ Ext1(L0,M0), and
comparison with the proof of (7.2) shows that this ξ is precisely the obstruction
to lifting the sheaf M0 as a quotient of E0 to the restriction of E to the dual
numbers Spec k[t]/t2 along T . Since the sequence splits, ξ = 0, and we can lift
M0 to a quotient M1 of E1 = E ⊗ k[t]/t2.

Suppose we have lifted M0 to a quotient Mn of En = E ⊗ k[t]/tn+1. Let
F (a new one) be the kernel of the composed map E → En → Mn. Then
F is another extension of E ′ to X × T , and as above, its closed fiber F0

belongs to an exact sequence as in (11). As before, F0 must be unstable, so
ξ ∈ Ext1(L0,M0) is zero. This is the obstruction to extending the quotient
En →Mn one more step to get En+1 →Mn+1.

Thus we see that the quotient E0 →M0 from (10) lifts to all infinitesimal
neighborhoods of 0 ∈ T . Since the Quot scheme represents the functor, and
is a scheme of finite type over the base (24.5.2), it follows that there is a
component of this Quot scheme that dominates T . Thus the general Et has
a quotient Mt of the same degree as M0, contradicting the semistability of
Et for t �= 0. So by contradiction, we have shown that there must have been
some extension of E ′ to an E on X × T with E0 semistable.

Example 28.7.1. We will now consider in some detail an example of a moduli
space including simple but unstable bundles, suggested by [123, 12.3].

Let X be a nonsingular projective curve of genus 3. We consider simple
vector bundles of rank 2 and degree 1. For these we have a moduli space
(28.5.1) that is at least a complex manifold M when k = C. I do not know
whether it has a structure of a scheme. It is smooth and of dimension 9 [19.2.1].
We proceed in several steps.
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(a) First we show that there exist simple unstable bundles in M . Let L,M
be line bundles of degrees 1, 0, respectively on X, with the property that
h0(M∨ ⊗ L) = 0. This is possible because M∨ ⊗ L has degree 1, and
a general divisor of degree 1 on X is not effective. Then H1(M∨ ⊗ L)
has dimension 1, and a nonzero element of this group, considered as
Ext1(M,L), defines a nonsplit extension

0→ L → E →M→ 0. (12)

Its stability degree is −1; hence E is unstable. Now suppose E were not
simple. Then there would be a map ϕ : E → E of rank 1, as in the proof
of (28.1). If deg Imϕ ≥ 1, then Imϕ = L, because the maximal sub-
line bundle of an unstable sheaf is unique. But this means (12) splits.
So deg Imϕ ≤ 0; hence kerϕ has degree ≥ 1, so kerϕ = L. In that
case Imϕ =M, so M must map to L, contradicting the hypothesis that
h0(M∨ ⊗ L) = 0. Thus E is simple.
Note that the extension E is determined up to scalar multiple, so that E is
determined up to isomorphism by L andM. These line bundles are chosen
in Pic1X and Pic0X, respectively, of dimension 3 each, subject to the open
condition h0(M∨⊗L) = 0, so there is an irreducible 6-dimensional family
of these simple unstable bundles with stability degree −1. We denote the
corresponding subset of the moduli space by M−1 ⊆ M . It is easy to see
that there are no simple bundles with δ < −1.

(b) Next we consider stable bundles with stability degree δ = 1. We can con-
struct these as follows. Let L,M be line bundles of degrees 0, 1, respec-
tively, and consider extensions

0→ L → E →M→ 0 (13)

given by an element ξ ∈ H1(M∨ ⊗ L), which has dimension 3. If ξ �= 0
it is easy to see that E is stable. The choices of L and M require three
dimensions each, and ξ up to scalars, two dimensions, so in this way we
obtain a family of dimension 8 of stable bundles.
When are two of these isomorphic? Or in other words, when can the same
E be represented in another way as such an extension? This can happen
only if there is another line bundleN of degree 0 such that h0(E⊗N∨) �= 0.
So we examine the sequence

0→ H0(L ⊗N∨)→ H0(E ⊗ N∨)→ H0(M⊗N∨) α→ H1(L ⊗N∨)

→ · · · .

If the term on the left is nonzero, then N ∼= L and we have nothing new.
So, assuming H0(L ⊗ N∨) = 0, in order for H0(E ⊗ N∨) �= 0, we must
have H0(M⊗N∨) �= 0, and the map α from there to H1(L ⊗N∨) must
be zero. Since degM⊗N∨ = 1, this can happen only if N ∼=M(−P ) for
some point P ∈ X. Comparing with the sequence for E ⊗M∨ we have a
commutative diagram
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H0(O(P )) α−−−−→ H1(M∨ ⊗ L(P ))
�
⏐
⏐

�
⏐
⏐

H0(O) α−−−−→ H1(M∨ ⊗ L)

Now 1 ∈ H0(O) goes by α to ξ ∈ H1(M∨ ⊗ L), which is 3-dimensional.
The first vertical arrow takes 1 to the unique section of H0(O(P )) and
our requirement that this go to 0 by α says that ξ must be in the kernel
of the second vertical map H1(M∨⊗L)→ H1(M∨⊗L(P )). This map is
surjective, and h1(M∨ ⊗L(P )) = 2, so by reason of dimension the kernel
has dimension 1.
Thus for each P ∈ X there is a unique ξ (up to scalar) for which the
corresponding E has another representation as

0→M(−P )→ E → L(P )→ 0.

So for given L,M, there is a P
2 of possible extensions (13). There is a map

of the curve X to P
2 such that for each P ∈ X, the ξ that is its image

defines an E with a second representation.
So we can describe the set M1 of stable bundles with δ = 1 as a P

2-bundle
over Pic0X × Pic1X, in which a certain divisor has been identified in a
finite-to-one manner. In particular, dimM1 = 8.

(c) A theorem of Nagata [122] implies that every rank 2 bundle on X has
stability degree δ ≤ 3. Since the space M has dimension 9, and the bundles
with δ = −1, 1 form families of dimension 6, 8, respectively, we conclude
that there are bundles with δ = 3 and that these form an open dense
subset of M . We denote the set of all these by M3. Thus M is the union
of the subsets M−1, M1, and M3.

(d) The whole space M is irreducible. Since we know that it is smooth of
dimension 9, and M−1,M1 have lower dimension, it is enough to show
that M3 is irreducible. This is clear, because we can form an irreducible
family of extensions as in (13) with degL = −1, degM = 2, containing
an open set of stable bundles, and which maps surjectively to M3.

(e) Let M ′ ⊆ M be the open subset consisting of points corresponding to
stable bundles only, i.e., M1 together with M3. Since the rank and degree
are coprime, there are no semistable bundles. Thus by (28.6) and (28.7),
the space M ′ is separated and complete. In the case k = C, this means
that it is a compact Hausdorf space. In the algebraic case, one knows from
geometric invariant theory that it is a nonsingular projective variety.

(f) The puzzle is, where do the points ofM−1 fit in this moduli space? We have
to imagine the separated complete space M ′, which however is dense in M ,
so the points of M−1 are hovering over the space M ′ in some nonseparated
way.
To understand this better, let E0 be an unstable simple bundle in M−1,
given by an extension
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0→ L0 → E0 →M0 → 0 (14)

with degL0 = 1, degM0 = 0. We know that it is in the closure of M ′, so
take a family E on X×T for a curve T , with Et stable for t �= 0, and having
E0 as its fiber at 0. As in the proof of (28.7), let F = ker(E → M0) be a
new family. Then Ft

∼= Et for t �= 0 and F0 belongs to an exact sequence

0→M0 → F0 → L0 → 0. (15)

This extension is defined by an element ξ ∈ Ext1(L0,M0) that is deter-
mined by the family E we chose having limit E0. The tangent space to M at
E0 is Ext1(E0, E0), and ξ is the image of the tangent vector τ ∈ Ext1(E0, E0)
corresponding to the family E . The map β : Ext1(E0, E0)→ Ext1(L0,M0)
is given by the maps L0 → E0 and E0 → M0 from (14), and since X is
a curve, this map β is surjective. In other words, by choosing all different
approaches to E0 in the family M , we obtain all possible extensions (15),
hence all those elements of M1 that can be written as extensions in (15).
Summing up, the whole smooth connected moduli space M contains a
separated and complete subspace M ′ = M1 ∪M3, which is dense in M .
A point x of M−1 is (in many ways) a limit of a family of points in
M ′, and each such family determines a point x′ ∈ M ′. Thus we have a
correspondence between M−1 and M ′ that explains the nonseparated way
in which they are attached. The graph of this correspondence is a P

2-
bundle over M−1, and its map to M ′ collapses the divisor mentioned in
(b) and has image a dense open subset of M1. Not all points of M1 have
a correspondent in M−1, because of the condition h0(M∨⊗L) = 0 of (a).

References for this section. Mumford [113] defined the notion of stabi-
lity for vector bundles on a curve, and announced the existence of a quasi-
projective coarse moduli space for stable vector bundles on curves. About
the same time, Narasimhan and Seshadri [123] showed that stable bundles on
curves over C correspond to irreducible unitary representations of the fun-
damental group of the curve. Since then, the moduli of vector bundles on
curves have been studied thoroughly. The notion of stability was extended
to torsion-free sheaves on varieties of higher dimension by Gieseker [36] and
Maruyama [101], who proved the existence of a (coarse) moduli space locally
of finite type. The finiteness, and hence projectivity, of this space was at
first established only in case of characteristic zero, or rank 2, or dimension of
the base space 2. The boundedness of the family of semistable bundles in all
ranks and all characteristics was proved only recently [90]. See the appendix
to Chapter 5 of [119] for a survey of these results up to 1981, and [70] for fur-
ther developments and references, too many to include here. For stable vector
bundles of rank 2 on P

3, see [58].

Exercises.
28.1. Let E be a vector bundle on the curve X, let L be an invertible sheaf, and
let E ′ = E ⊗L. Show that E ′ is stable (resp., semistable, simple, indecomposable) if
and only if E is.
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28.2. Show that E onX is stable if and only if for every quotient bundle E → G → 0
of E , with 0 < rankG < rank E , we have

μ(G) > μ(E).

28.3.

(a) Give examples of bundles on curves to show that each of the implications in
(28.1) is strict.

(b) Show also that there are bundles that are
(1) semistable but not indecomposable;
(2) simple but not semistable.

28.4. Complete the proof of (28.2) for ranks r ≥ 3. Be careful, because even though
E is assumed to be indecomposable, when you take a sub-line bundle L of maximum
degree, the quotient E/L may not be indecomposable. Show, however, that if it
decomposes, the possible degrees and ranks of the factors are finite in number.

28.5. Show that the family of semistable bundles of given rank and degree on a
curve X is bounded.

28.6.

(a) Let S be an integral scheme of finite type over k, and let E and E ′ be two
locally free sheaves on X × S such that for every closed point s ∈ S, the fibers
Es and E ′

s are simple and isomorphic to each other. Let F = Hom(E , E ′), and
show that π∗F is locally free of rank 1 on S, where π : X × S → S is the
projection. Conclude that S can be covered by open sets U such that EU and E ′

U

are isomorphic on X × U for each U .
(b) Show that a fiberwise trivial family of simple vector bundles on an integral

scheme S of finite type over k is locally trivial in the Zariski topology.

28.7. Use (28.4) to show that there can be no jump phenomena for simple vector
bundles on a curve X.

28.8. Let E be a simple rank 2 bundle on a curve X of genus 2. Show that

(a) if deg E is even, then E is semistable;
(b) if deg E is odd, then E is stable.

28.9. Stable rank 2 vector bundles on P
2.

(a) Chern classes. Using the theory of Chern classes [57, Appendix A, §3] verify
the following. A rank 2 vector bundle E on P

2 has two Chern classes c1, c2 ∈ Z.
Show that
(1)

∧2 E ∼= O(c1).
(2) The Euler characteristic χ(E) = 1

2
(c21 + 3c1) − c2 + 2.

(3) For any n, c1(E(n)) = c2(E) + c1(E) · n+ n2.
(4) If E has a global section s vanishing only at points, then there is an exact

sequence
0 → O s→ E → IZ(a) → 0,

where a = c1(E) and Z is a zero-scheme of length c2(E).
(5) χ(End E) = c21 − 4c2 + 4.
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(b) Stable bundles. We say that a rank 2 bundle E on P
2 is stable if for every

line bundle L ⊆ E we have c1(L) < 1
2
c1(E). If E is a rank 2 bundle with c1 = 0,

show that:
(1) E is simple if and only if E is stable, if and only if h0(E) = 0.
(2) If E is stable, then c2(E) ≥ 2.
(3) For E stable, the functor of infinitesimal deformations is pro-representable.
(4) For E stable, h2(End E) = 0.
(5) The pro-representing family is smooth of dimension 4c2 − 3.

(c) Boundedness. Show that the family of stable rank 2 bundles on P
2 with

Chern classes c1 = 0 and fixed c2 is bounded, as follows:
(1) Show that there is an n ≤ √

c2 such that h0(E(n)) �= 0.
(2) If n is the least integer for which h0(E(n)) �= 0, then a section s ∈ H0(E(n))

can vanish only at points.
(3) Use exact sequences of the form

0 → O s→ E(n) → IZ(2n) → 0,

where Z is a zero-scheme of length c2 + n2, to show that E is determined by
the choice of Z and an element ξ ∈ Ext1(IZ(2n),O). Thus show that the
family is bounded.

(d) Existence. Show the existence of rank 2 stable bundles on P
2 with c1 = 0 as

follows.
(1) For any c2 ≥ 2, let Z be a general set of c2 + 1 points in P

2. Show that for
a general element ξ ∈ Ext1(IZ(2),O), the extension

0 → O → E(1) → IZ(2) → 0

defines a stable bundle E with c1 = 0 and the given c2.
(2) If c2 = 2, 3, 4, 5, show that every stable bundle E with c1 = 0 and the given

c2 can be obtained as in (1).
(3) If c2 ≥ 6, show that there exist stable bundles E with c1 = 0, the given c2,

and h0(E(1)) = 0.
(e) Modular families. Imitating the methods of this section show that the family

of stable rank 2 bundles E on P
2 with c1 = 0 and given c2 ≥ 2 has a modular

family that is smooth, separated, of dimension 4c2−3, and irreducible. (To show
that it is irreducible, show that there is a uniform n0 depending on c2 such that
for every bundle E in the family, E(n0) is generated by global sections. Show
then that a general section of E(n0) vanishes only at points and use extensions
as in (c) (3) above.)

29. Smoothing Singularities

In this section we study the question of simplifying the singularities of a
scheme by deformation. At one extreme we have smoothable singularities,
which can be deformed to nonsingular varieties. At the other extreme we
have rigid sigularities, which have no deformations at all. In between there
are singularities that can be deformed but not smoothed. The principal tech-
nical difficulty we encounter is how to recognize at the level of infinitesimal
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deformations when a global deformation will be nonsingular. To do this we
introduce the notion of a formally smoothable scheme, and investigate its
properties. This gives a framework for passage from local to global.

We give conditions under which a projective variety with locally smooth-
able singularities is globally smoothable. Applying these techniques to curves,
we show that a curve is globally smoothable if and only if its singularities are
locally smoothable. We give various examples of curves that are smoothable
or not smoothable in P

3. We give Mumford’s example of a nonsmoothable
abstract curve singularity.

In higher dimensions, we study cones over projective varieties, giving rise to
examples of rigid singularities, generic singularities, and Pinkham’s examples
of nonsmoothable normal surface singularities.

As a final application, we use a smoothing argument to show that for any
genus g, the subset of d-gonal curves in the variety of moduli Mg is in the
closure of the set of (d+ 1)-gonal curves, for any d.

Let X0 be a scheme of finite type over an algebraically closed field k.
We say that X0 is smoothable if there exists a flat family X/T of schemes over
an integral scheme of finite type T and a point 0 ∈ T such that the fiber over
0 is X0, and there are fibers Xp for p �= 0 that are nonsingular (hence smooth
over k). This definition comes in different flavors, depending on whether X0 is
affine or projective, and whether we seek to smooth X0 as an abstract scheme
(as above), or, when X0 is a closed subscheme of a smooth scheme P , we seek
to smooth X0 as a subscheme of P .

For any scheme T of finite type over k and a nonisolated point 0 ∈ T ,
we can find a nonsingular curve T ′ over k (not necessarily complete), a point
0′ ∈ T ′, and a morphism T ′ → T sending 0′ to 0 and p′ ∈ T ′, p′ �= 0′ to a
point p ∈ T , p �= 0. Thus X0 is smoothable if and only if there is a family as
in the definition above, where T is required to be a nonsingular curve over k.

Example 29.0.1. A hypersurface in P
n, or more generally, a complete inter-

section scheme in P
n, is smoothable. This follows from repeated applications

of Bertini’s theorem [57, II, 8.18], since the space of complete intersections of
given degrees is irreducible.

Extending this argument, we can show that a complete intersection X0

in a smooth affine scheme Z, that is, defined by r elements f1, . . . , fr in the
affine ring of Z, where r is the codimension of X0, is smoothable in Z. Indeed,
let Z̄ be the projective closure of Z in some projective space P

n, and let
f̄1, . . . , f̄r, be homogeneous polynomials on P

n that reduce to f1, . . . , fr on Z.
Then Bertini’s theorem, applied to the nonsingular part Z of Z̄, gives a family
of smooth complete intersections smoothing X0 in Z.

Example 29.0.2. On the other hand, we have seen some examples of nons-
moothable schemes. There are zero-dimensional schemes in A

3 and A
4 that

are not smoothable (Ex. 5.8), (Ex. 8.10). Some nonreduced projective curves
are not smoothable (Ex. 5.10). We will see later in this section examples of
nonsmoothable integral curves (29.10.3) and normal surfaces (29.12).
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Example 29.0.3. Recall that a scheme is rigid if it has no nontrivial defor-
mations over the dual numbers (5.3.1). We have seen examples of normal rigid
singularities in dimension ≥ 3 (5.5.1), (Ex. 5.4), of reduced rigid singularities
in dimension 2 (Ex. 5.5), and of nonreduced rigid projective curves (Ex. 5.10).
It seems to be an open question whether there are any affine rigid singulari-
ties in dimension 0 or 1. Although common sense would suggest that a rigid
scheme is not smoothable, the proof is not obvious (29.6). The trouble is,
even though all infinitesimal deformations are trivial (Ex. 10.3), there may be
nontrivial global deformations (Ex. 4.9).

The main technical difficulty in studying smoothing questions is the rela-
tionship between infinitesimal deformations and global families containing the
given scheme. Since this point seems not to have been sufficiently addressed
in the literature, we will take some time to examine it carefully.

Proposition 29.1. Let X0 be an affine scheme of finite type over the alge-
braically closed field k. Let X/T be a flat family over a nonsingular curve T
of finite type over k with X,T both affine, and let 0 ∈ T be a point such that
the fiber of X over 0 is X0. We let T = SpecA, X = SpecB, and let F be the
functor T 1(B/A, ·) on B-modules. Let t ∈ A generate the maximal ideal of 0
on T . Then the following conditions are equivalent:

(i) Xp is smooth for all p ∈ T , p �= 0, so the family X/T smooths X0.
(ii) There is an integer n0 such that tn0 · F (M) = 0 for all finitely generated

B-modules M .

Proof. We know from (4.11) that a morphism is smooth if and only if the
relative T 1 functor vanishes for all modules. Thus condition (i) says that the
functor F is zero over T \ {0}. In other words, for every B-module M of
finite type, F (M) has support along the closed fiber X0 defined by t, and so
tn ·F (M) = 0 for some n (depending on M). Before completing the proof, we
recall the definition of a coherent functor [9], [64] and prove a lemma.

Definition. LetB be a noetherian ring, let Mod(B) be the category of finitely
generated B-modules, and let F be a covariant functor from Mod(B) to itself.
We say that the functor F is coherent if there are modules P,Q ∈ Mod(B)
and a homomorphism f : P → Q such that F appears as the cokernel functor

Hom(Q, ·)→ Hom(P, ·)→ F (·)→ 0.

Lemma 29.2. Let B be a noetherian ring, let F be a coherent functor on
Mod(B), and let t ∈ B be a non-zero-divisor. Suppose that for every M ∈
Mod(B) there exists some n > 0 such that tn · F (M) = 0. Then there is a
uniform n0 > 0 such that for every M ∈ Mod(B), we have tn0 · F (M) = 0.

Proof. Our hypothesis implies that the extension of F to the category of
modules over the localized ring Bt is identically zero. Hence for any Bt-module
N , the map
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HomBt
(Qt, N)→ HomBt

(Pt, N)

is surjective. Taking N = Pt and lifting the identity map, we obtain a map
σ : Qt → Pt such that σ ◦ f = idPt

. Looking at a finite set of generators of Q
and their images in Pt, we can find a common denominator, so that tn0σ sends
Q to P . It follows that for any M ∈ Mod(B), all elements of tn0 Hom(P,M)
are in the image of Hom(Q,M), and hence tn0 · F (M) = 0.

Proof of (29.1), continued. By (3.10) the functor F = T 1(B/A, ·) is
coherent. Condition (i) is equivalent to the hypothesis of the lemma, so from
the lemma we obtain (ii). The converse is immediate.

Definition. Let X0 = SpecB0 be an affine scheme of finite type over k.
We say that X0 is formally smoothable if there exists a formal family over
A = k[[t]], that is, a compatible collection of deformations Xn = SpecBn

of X0/k over An = k[t]/tn+1 for each n, and there exists a uniform n0 > 0
such that for each n, and for each Bn-module of finite type Mn, we have
tn0 · T 1(Bn/An,Mn) = 0.

Remark 29.2.1. With this definition, the implication (i) ⇒ (ii) of (29.1)
simply says that if X0 is smoothable, then it is formally smoothable. Indeed,
with X/T as in (29.1), for each n let Bn = B⊗A A/t

n+1. Then the collection
of Xn = SpecBn makes a formal family, and it satisfies the condition of the
definition because by base change properties of the T i functors (Ex. 3.8), for
any Bn-module Mn we have T 1(B/A,Mn) = T 1(Bn/An,Mn).

Remark 29.2.2. If X0 is not affine, we can define formally smoothable in the
same way, using a formal family of deformations Xn/An, and requiring that
for every coherent sheaf Fn on Xn, tn0 · T 1(Xn/An,Fn) = 0, using the T 1

sheaves. By applying (29.1) to an open affine cover of X0 we see similarly that
if X0 is smoothable, then it is formally smoothable.

Remark 29.2.3. If X0 is a closed subscheme of a smooth scheme Z, we say
that X0 is a formally smoothable subscheme if in the above definition all the
Xn are closed subschemes of Z.

Next, we give some elementary properties of formally smoothable schemes.

Proposition 29.3. Let X0 be an affine scheme with isolated singularities.
Then X0 is formally smoothable if and only if each singular point has a for-
mally smoothable affine neighborhood.

Proof. One direction is obvious. For the converse, let U0 be the disjoint union
of formally smoothable open affine subsets containing all the singular points
(each one once only). Then by hypothesis there is a formal family {Un} of
deformations of U0 and an integer n0 such that tn0 · T 1(Un/An,Mn) = 0 for
every Un-module Mn. We need to construct a formal family of deformations
Xn of X0 with the same property.
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Suppose inductively we have Xn whose restriction to U0 is isomorphic to
Un. The obstruction to finding an extension Xn+1 of Xn over An+1 lies in a
certain T 2 group (10.1), which is supported at the singular points, and this
obstruction is zero because an extension Un+1 of Un exists. Hence an extension
Xn+1 exists, and the set of such is a torsor under T 1(X0/k,OX0). But this T 1

is supported at the singular points, so it is isomorphic to the corresponding
T 1 for deformation of U0. Therefore we can find Xn+1 whose restriction to U0

is isomorphic to Un+1. Then the vanishing of tn0 ·T 1(Un/An,Mn) implies the
same for Xn.

Remark 29.3.1. Because of this proposition, for an isolated singularity, it
makes sense to say that it is locally formally smoothable if it has a formally
smoothable affine neighborhood. This property is independent of the affine
neighborhood chosen.

Remark 29.3.2. In the proof of (29.3) each deformation of X0 induces a
deformation of U0, so that we have a morphism of deformation functors
Def(X0) → Def(U0). The proof then shows that this morphism is strongly
surjective (§15). In fact it is an isomorphism.

Proposition 29.4. Let X0 and X ′
0 be affine schemes each having a single

isolated singularity at points P, P ′, and assume that these singular points are
analytically isomorphic. Then X0 is formally smoothable if and only if X ′

0 is
formally smoothable.

Proof. There is an isomorphism of the deformation functors Def(X0) and
Def(X ′

0), so that a formal family Xn of deformations of X0 corresponds to
a formal family X ′

n of deformations of X ′
0, and furthermore, the singularities

of Xn and X ′
n at P and P ′ are analytically isomorphic (Ex. 18.6). Since in

this case the corresponding T 1 functors are also isomorphic (Ex. 4.4), the
condition to be formally smoothable carries over from one to the other.

Proposition 29.5. Let X0 be a formally smoothable closed subscheme of a
nonsingular projective scheme Z over k. Then X0 is smoothable as a sub-
scheme of Z.

Proof. We make use of the fact that deformations of closed subschemes of a
projective scheme are represented by the Hilbert schemeH. LetX0 correspond
to a point x0 ∈ H. Then a formal family Xn of deformations of X0 in Z
corresponds to a series of compatible maps of SpecAn → H landing at the
point x0. Taking their limit we obtain a map of T = Spec k[[t]] to H. Let X/T
be the pullback of the universal family over H. I claim that the generic fiber
Xτ over the generic point τ ∈ T is smooth.

Covering X0 with open affines and considering the corresponding open
affines of X over T , we reduce to the case X = SpecB affine, where now B
is a finitely generated A = k[[t]]-algebra. We apply the argument of (29.1) to
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show that Xτ is smooth by showing that tn0 · F (M) = 0 for every finitely
generated B-module, where n0 is the integer occurring in our hypothesis that
X0 is formally smoothable, and F is the functor T 1(B/A, ·). It is enough
to verify for every closed point x ∈ X0 that tn0 · F (M)∧x = 0, meaning the
completion of F (M) over the complete local ring B∧

x . Since F is a coherent
functor, F (M)∧x = lim←−F (M/mn+1

x M). This follows from the definition of a
coherent functor and the Mittag-Leffler condition for the finite-length modules
F (M/mn+1

x M) [64, 3.5]. Now for each n, Mn = M/mn+1
x M is a module of

finite type over the ring Bn = B⊗AAn, so the n0 that occurs in our hypothesis
that X0 is formally smoothable will do. (Here again we use base extension
(Ex. 3.9) for the T 1-functor.)

Thus we have shown that the generic fiber Xτ is smooth. Let ξ be the
image of τ in H. This is not a closed point of H. But since the set of points
x ∈ H for which the corresponding closed subscheme is smooth is an open set,
the presence of ξ, whose closure contains x0, shows that x0 is in the closure of
the open subset of H corresponding to smooth subschemes. Now we need only
take a morphism of a nonsingular curve over k to H whose image contains x0

and meets this open set to obtain a smoothing of X0 in Z.

Now comes our first application.

Proposition 29.6. A singular rigid scheme is not formally smoothable, and
hence not smoothable.

Proof. If X0 is singular, then there is some X0-module M0 for which
T 1(X0/k,M0) �= 0. If X0 is rigid, and Xn is a deformation of X0 over
An = k[t]/tn+1, then Xn

∼= X0 × SpecAn (Ex. 10.3). Let Mn = M0 ⊗k An.
Then T 1(Xn/k,Mn) = T 1(X0/k,M0) ⊗ An is not annihilated by tn. Taking
n sufficiently large, we see that X0 cannot be formally smoothable (29.2.1).

For further applications, we need to compare deformations of a projective
scheme with deformations of its affine open subsets. We give a criterion when
the restriction map from global to local deformations is strongly surjective.

Theorem 29.7. Let X0 be a closed subscheme of the nonsingular projective
scheme Z, and assume that X0 has isolated singularities. Let U0 be the disjoint
union of open affine subsets of X0 containing all the singular points of X0,
each one once. Suppose that

(a)H1(X0,NX0/Z) = 0 and
(b)H0(X0,NX0/Z)→ T 1

X0
→ 0 is surjective.

Then the restriction map of functors Hilb(X0, Z) → Def(U0) from embedded
deformations of X0 in Z to abstract deformations of U0 is strongly surjective.

Proof. Hypothesis (b) tells us that the map of functors is surjective on
tangent spaces. To show strong surjectivity, suppose we are given a small
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extension C ′ → C of Artin rings and a deformation X of X0 in Z over C,
restricting to a deformation U of U0, and suppose furthermore that we are
given an extension U ′ of U over C ′. We must show that there is an extensionX ′

of X over C ′ restricting to U ′. First of all, consider the obstruction to extend-
ing X over C ′. The existence of an extension U ′ of U tells us that there are no
local obstructions to extending X, since U0 contains all the singular points of
X0. Therefore (10.9) the obstruction to extendingX lies inH1(X0,NX0/Z⊗J),
which is zero because of hypothesis (a). Thus some extension X ′ exists. The
set of choices for X ′ is a torsor under H0(X0,NX0/Z), and since this maps
surjectively to T 1

X0
= T 1

U0
, we can adjust the choice of X ′ so as to restrict

to U ′.

Corollary 29.8. Suppose that X0 is a closed subscheme of the nonsingular
projective scheme Z, having isolated singularities and satisfying conditions
(a), (b) of (29.7). Suppose furthermore that each singular point Pi is locally
formally smoothable. Then X0 is smoothable in Z.

Proof. By hypothesis we can find a formally smoothable open affine subset
Ui of X0 containing Pi for each i. Let U0 be the disjoint union of the Ui. Then
by (29.7) the restriction map of functors Hilb(X0, Z) → Def(U0) is strongly
surjective. This means we can lift a family Un of compatible deformations of
U0 to a family of compatible deformations Xn of X0 in Z, and we conclude
that X0 is formally smoothable in Z. Then from (29.5) it follows that X0 is
smoothable in Z.

Now we will apply these results to smoothing curve singularities.

Proposition 29.9. A reduced curve Y in P
n with locally smoothable singu-

larities and H1(Y,OY (1)) = 0 is smoothable. In particular, this applies if Y
has locally complete intersection singularities.

Proof. Since Y is reduced, its singularities are isolated. Since the singularities
are locally smoothable, the obstructions to deforming Y in P

n will lie in
H1(Y,NY/Pn).

The defining sequence for the module T 1
Y , supported at the singular points

of Y is (3.10)

0→ TY → TPn ⊗OY → NY/Pn → T 1
Y → 0.

Splitting this sequence with a coherent sheaf R, we have

0→ TY → TPn ⊗OY → R→ 0,

0→ R→ NY/Pn → T 1
Y → 0.

From the Euler sequence on P
n we have

0→ OY → OY (1)n+1 → TPn ⊗OY → 0.



206 4 Global Questions

Now since Y is a curve, the hypothesis H1(OY (1)) = 0 implies H1(TPn ⊗
OY ) = 0 and therefore also H1(R) = 0. And this in turn, since T 1

Y is sup-
ported at points, implies H1(NY/Pn) = 0 and H0(NY/Pn) → T 1

Y → 0 is sur-
jective. Since smoothable implies formally smoothable (29.2.1), the conditions
of (29.8) are satisfied, and Y is smoothable in P

n.

Remark 29.9.1. In P
3 we can strengthen this result to say that any reduced

curve Y in P
3 with H1(Y,OY (1)) = 0 is smoothable. The reason is that

a curve in P
3 is a Cohen–Macaulay scheme of codimension 2. Schaps [144]

shows that a Cohen–Macaulay subscheme of codimension 2 and dimension
≤ 3 in an affine space is smoothable. This is done by adding extra variables
and comparing it to a generic Cohen–Macaulay subscheme defined by the
r × r minors of an r × (r + 1) matrix of indeterminates. One knows that the
singular locus of this one is defined by the (r−1)× (r−1) minors of the same
matrix and has codimension 6 in the ambient space, hence codimension 4
in the subvariety. Thus for a variety of dimension ≤ 3 one can avoid the
singularities by deformation. This result is sharp, because for example the
cone in A

6 over the Segre embedding of P
1 × P

2 in P
5 is rigid and hence not

smoothable (Ex. 5.4), (29.6).

Example 29.9.2. The hypothesis H1(Y,OY (1)) = 0 is necessary in (29.9).
Let Y be the union of a plane quartic curve with a line meeting it at one point
and not lying in the same plane. This curve is not smoothable in P

3 for the
simple reason that there are no nonsingular curves of degree 5 and genus 3 in
P

3. Even though this curve is not smoothable in P
3, it is smoothable as an

abstract curve because of (29.10) below.

Example 29.9.3. For an example of an irreducible reduced curve with a
single node in P

3 that is not smoothable in P
3, see [60].

Example 29.9.4. Ein [23] shows that any integral curve in P
3 with d ≥ pa+2

is smoothable, by carefully counting the dimension of the family of singular
curves and showing that it is less than 4d (cf. (12.1)).

Corollary 29.10. An abstract reduced curve Y with locally formally smooth-
able singularities is smoothable.

Proof. First embed Y in a complete curve Ȳ and normalize at points of Ȳ \Y
so as to introduce no new singularities. Thus we reduce to the case Y com-
plete. Taking a Cartier divisor of sufficiently high degree on each irreducible
component of Y , we can embed Y as a curve in P

n with H1(Y,OY (1)) = 0.
Then by (29.9) Y is smoothable in P

n, and a fortiori is smoothable as an
abstract curve.

Example 29.10.1. Any stable curve (27.4) is smoothable.
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Example 29.10.2. A connected, reduced curve Y in P
n with pa(Y ) = 0 is

smoothable. If Y is irreducible, being reduced with pa = 0, it is already
isomorphic to P

1, hence smooth. If it is reducible and connected, then we
can find an irreducible component C such that the union of the remaining
irreducible components, D, is still connected. Let s be the length of the in-
tersection scheme S = C ∩ D. Then pa(Y ) = pa(C) + pa(D) + s − 1. Since
the arithmetic genus of any reduced connected curve is ≥ 0, we conclude that
pa(C) = pa(D) = 0 and s = 1. By induction on the number of irreducible
components, D is smoothable. Then smoothing D while keeping C fixed and
always meeting at one point, we reduce to the case D irreducible and smooth.
Since C is irreducible with pa = 0, it is already smooth. Now Y consists of
the two nonsingular irreducible components C,D meeting with multiplicity
one. Thus their intersection is a node. To show that Y is smoothable it is now
sufficient, by (29.9), to show that H1(OY (1)) = 0.

Consider the exact sequence

0→ OY (1)→ OC(1)⊗OD(1)→ kS → 0.

Since C and D are rational curves, H1(OC(1)) = H1(OD(1)) = 0. Also clearly
H0(OC(1))→ kS is surjective. Hence H1(OY (1)) = 0, and Y is smoothable.

Example 29.10.3. A nonsmoothable integral curve. This example is
due to Mumford [118]. Let C be a nonsingular projective curve of genus g ≥ 3
with no automorphisms. Let P ∈ C be a point, and inside the local ring
OC,P with maximal ideal m, let V be a sub-k-vector space of OC,P with
m2n ⊆ V ⊆ mn for some even integer n. We define a new curve C(V ) by
“pinching” C at P using V : the curve C(V ) is the union of C \ {P} with
a new point P ′ whose local ring on C(V ) is k ⊕ V . The new curve C(V ) is
integral, with arithmetic genus pa(C(V )) = g + length(OC,P /V ).

If V1 and V2 are two such vector spaces, then C(V1) and C(V2) are isomor-
phic if and only if V1 = V2. Indeed their normalizations are both equal to C,
which has no automorphisms, by hypothesis, so an isomorphism would have
to carry V1 to V2.

If we fix n and fix the dimension of V/m2n, then the family of such curves
can be made into a flat family parametrized by the Grassmann variety of
V/m2n inside mn/m2n. If we take dimV/m2n = 1

2n, then the dimension of
this family is 1

4n
2. Meanwhile, the arithmetic genus of these curves is pa =

g+
(

3
2n− 1

)
. Thus for n sufficiently large, the dimension of the family exceeds

3pa − 3. We will show in this case that the general curve of the family is not
smoothable.

Changing notation, letX/S be an irreducible flat family of singular integral
projective curves of arithmetic genus pa. Assume that dimS ≥ 3pa − 3 and
for each s ∈ S the set of s′ ∈ S for which Xs

∼= Xs′ is finite. Then the general
fiber Xs is not smoothable.

We proceed by contradiction. If a fiber Xs is smoothable, then there exists
a flat family X ′/T whose general fiber X ′

t is a smooth curve of genus g =



208 4 Global Questions

pa(Xs) and whose special fiber X ′
0 is Xs. Choose a projective embedding

Xs ↪→ P
n with h1(OXs

(1)) = 0. Then by (Ex. 21.5), after an étale base
extension T ′ → T , one can embed the family X ′/T in P

n
T restricting to the

given embedding of Xs. Hence Xs ⊆ P
n is in the closure of the set of non-

singular curves of the same degree and genus in P
n. Assuming this holds for all

s ∈ S, and that the embedding Xs ↪→ P
n was chosen uniformly for all s ∈ S,

we conclude that there is an irreducible component of the Hilbert scheme of
nonsingular curves of genus g in P

n whose closure contains a dense subset of
the family S. Cutting this with hypersurfaces, we can find a flat family X ′/S′

where dimS′ = dimS + 1 and an embedding S ⊆ S′ such that X ′|S = X.
Now for general s′ ∈ S′, the fiber X ′

s′ is nonsingular, so it is still true that for
general s ∈ S the set of s′ ∈ S′ with Xs

∼= X ′
s′ is finite.

To arrive at a contradiction, we consider the two families X ′×S′ and S′×
X ′ over S′×S′, and let I be the Isom scheme I = IsomS′×S′(X ′×S′, S′×X ′)
(24.10.2). Let π : I → S′ be the projection on the first factor. Then for a point
s′ ∈ S′, the fiber of π over s′ consists of triples (s′, s′′, ϕ) where ϕ : Xs′ → Xs′′

is an isomorphism. Since dimS′ = dimS + 1 > 3g − 3, for a general point
s′ ∈ S′ the fiber π−1(s′) will have dimension ≥ 1. Think of a modular family
of curves of genus g (§27), which has dimension 3g−3, and the corresponding
morphism of S′ (after an étale base extension) to that modular family.

On the other hand, for a general point s ∈ S, the number of s′ for which
Xs
∼= Xs′ is finite, and since the normalization is a curve of genus g ≥ 3, with

no automorphisms, the fiber π−1(s) is of dimension zero. This contradicts the
semicontinuity of dimensions of fibers of a morphism [57, II, Ex. 3.22].

We conclude that such a family X ′/S′ cannot exist and hence that the
general curve C(V ) in our family is not smoothable.

Because of (29.10), an open affine piece of this curve containing the singular
point is also not smoothable.

Furthermore, because of (29.4), any singularity analytically isomorphic to
one in this example is not smoothable. In particular, we could have made the
same construction on an affine line.

We now apply the methods of this section to deformations of cones.

Theorem 29.11 (Pinkham). Let Y be a nonsingular, projectively normal
subvariety of dimension ≥ 1 in P

n
k . Let X be the affine cone over Y in A

n+1
k ,

and let X̄ be its projective closure in P
n+1
k . Assume that H1(OY (ν)) = 0 and

H1(TY (ν)) = 0 for all ν > 0. Then every (abstract) infinitesimal deformation
of the affine cone X is induced by an (embedded) infinitesimal deformation of
the projective cone X̄ in P

n+1
k . More precisely, the morphism of functors of

Artin rings Hilb(X̄,Pn+1)→ Def(X) is strongly surjective.

Proof. We recall the notation of §5. Let x be the origin in A
n+1
k , and let

U = X−{x} be the punctured cone. We denote by Ū the punctured projective
cone X̄ − {x}. Also let V = A

n+1
k − {x} and V̄ = P

n+1
k − {x}.
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Step 1. As we saw in (Ex. 5.3), there is an exact sequence

0→ OU → TU → π∗TY → 0,

where π : U → Y is the projection. Comparing this with the analogous
sequence on V , restricted to U , we find that NU/V

∼= π∗NY/Pn . Furthermore,
since U is an A

1 − {0} bundle over Y , we have

π∗TY
∼=
⊕

ν∈Z

TY (ν)

and
NU/V = π∗NY

∼=
⊕

ν∈Z

NY (ν).

By the same reasoning on Ū , which is an A
1-bundle over Y , we find that

NŪ/V̄
∼=
⊕

ν≤0

NY (ν).

Step 2. From the definition of the T 1-module we have

0→ TX → TAn+1 |X → NX/An+1 → T 1
X → 0.

Since TAn+1 |X and NX are reflexive modules, and depthxX ≥ 2, we can
recover these from their sections over U , so that there is an exact sequence

H0(TV |U ) α→ H0(NU/V )→ T 1
X → 0.

The map α factors throughH0(π∗TPn |U ), by Step 1, so with the identifications
given there we have

⊕

ν∈Z

H0(TPn |Y (ν))→
⊕

ν∈Z

H0(NY (ν))→ T 1
X → 0.

Thus we can regard T 1
X as a graded module over R = k[x0, . . . , xn].

Step 3. From (5.4) we have an inclusion

0→ T 1
X → H1(U, TU ),

and from the sequence of Step 1 we can write an exact sequence

H1(U,OU )→ H1(U, TU )→ H1(U, π∗TY ).

Now our hypotheses H1(Y,OY (ν)) = 0 and H1(Y, TY (ν)) = 0 for all ν > 0
imply that H1(U,OU ) and H1(U, π∗TY ) are zero in positive degrees, hence
H1(U, TU ) also, and we conclude that T 1

X is zero in positive degrees. This is
what Pinkham calls the case of negative grading.
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Step 4. Recall from Step 2 that T 1
X is a quotient of

⊕
ν∈Z

H0(NY (ν)).
Since T 1

X has negative grading, it is in fact a quotient of the submodule⊕
ν≤0H

0(NY (ν)). But this is just H0(NŪ/V̄ ) by Step 1. And again using
the fact that NX̄ is reflexive and depthx X̄ ≥ 2, we find that H0(NŪ/V̄ ) =
H0(NX̄/Pn+1). Thus we have shown that

H0(NX̄/Pn+1)→ T 1
X → 0

is surjective. In other words, every first-order infinitesimal abstract deforma-
tion of X comes from a first-order embedded deformation of X̄.

Step 5. Now we wish to show that the morphism of functors Hilb(X̄) →
Def(X) is strongly surjective. This is similar to the proof of (29.8), except
that in this case we do not have H1(NX̄) = 0. Suppose we are given a small
extension of Artin rings C ′ → C and a deformation ξ of X̄ over C, inducing
a deformation η of X, and suppose η lifts to a deformation η′ of X over C ′.
We must show that there is a ξ′ restricting to ξ and η′.

Since any abstract affine deformation is embeddable (Ex. 10.1), we can
regard η′ as an embedded deformation η′′ of X. In particular, the restriction of
η to U extends over C ′ as an embedded deformation, and so the corresponding
obstruction in H1(U,NU ) must be zero.

Now the obstruction to extending ξ over C ′, since we know it is locally
extendable around x, and X̄ is nonsingular elsewhere, lies by (10.4) in
H1(X̄,NX̄). Because of the depth hypothesis once more, there is an injec-
tive map of this group to H1(Ū ,NŪ ). Finally, since we have seen in Step 1
that NŪ =

⊕
ν≤0NY (ν) and NU =

⊕
ν∈Z
NY (ν), it follows that H1(Ū ,NŪ )

injects into H1(U,NU ). Hence the obstruction to extending ξ reduces to the
obstruction to extending η, which is zero, and so ξ extends to a deformation
ξ′ of X̄ over C ′.

It remains to show that we can modify ξ′ so as to restrict to η′. This
follows from the fact that the map on tangent spaces of Hilb(X̄) to Def(X)
is surjective (Step 4), and the choices of extensions in each case are torsors
under the action of those tangent spaces.

Example 29.11.1. Rigid singularities. We have seen many examples of
rigid singularities, and we have shown that rigid singularities are not smooth-
able (29.6). Now we can show, for the particular class of rigid cone singularities
described in (5.5), that the associated projective cone is also rigid.

So let Y ⊆ P
n
k be a nonsingular projectively normal variety with

H1(OY (ν)) = H1(TY (ν)) = 0 for all ν ∈ Z. Let X̄0 be the projective cone
over Y in P

n+1. The tangent space to the functor of abstract deformations of
X̄0 fits in an exact sequence (Ex. 5.7)

0→ H1(TX̄0
)→ Def(X̄0)→ H0(T 1

X̄0
).

Now X̄0 is nonsingular except at the vertex, so T 1
X̄0

is concentrated there,
hence is the same as for the affine cone, which is zero (5.5). On the other
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hand, using the depth condition as in the proof of (29.11), Step 5, we see that
H1(TX̄0

) injects into H1(V̄ , TV̄ ) =
⊕

ν≤0H
1(Y, TY (ν)), which is zero. Hence

X̄0 is rigid. Furthermore, in any global family of projective deformations of
X̄0 the nearby fibers are also isomorphic to X̄0 (Ex. 24.7e).

Example 29.11.2. Generic singularities. These curious birds are singu-
larities that are neither rigid nor smoothable. They have nontrivial deforma-
tions, but these all resemble the original singularity. We have already seen
some (Ex. 5.8). To make more, we start with a projectively normal nonsingu-
lar variety Y ⊆ P

n
k satisfying H1(OY (ν)) = 0 for all ν and H1(TY (ν)) = 0 for

all ν �= 0. Let X0 be the affine cone over Y . Then from the proof of (29.11),
we see that T 1

X0
is included in H1(Y, TY ). On the other hand, any deforma-

tion of Y in P
n
k gives a deformation of the cone, so we see that T 1

X0
is just

the subspace of H1(Y, TY ) induced by embedded deformations. In particular,
any infinitesimal deformation of X0 is again a cone. Assuming that Y has
nontrivial abstract deformations embedded in P

n, X0 is a generic singularity
in the sense that it has nontrivial infinitesimal deformations, but they are all
cones over deformations of Y .

To make examples, let Y0 be a nonsingular surface of degree ≥ 5 in P
3.

Then Y0 has deformations in P
3 that are nontrivial as abstract deformations

of Y0, and every abstract deformation of Y0 is realizable inside P
3 (20.2.2).

Let Y ⊆ P
n be the d-uple embedding of Y0, for d sufficiently large. Then Y

will satisfy the conditions above.

Theorem 29.12 (Pinkham). Let Y ⊆ P
n be a nonsingular projectively nor-

mal curve of genus g ≥ 1 and degree d > 4g + 5 if g = 1 or d > 4g + 4 if
g ≥ 2. Then the affine cone X0 ⊆ A

n+1 is not smoothable. In fact, it is not
even locally formally smoothable.

Proof. By (29.11), if X̄0 is the closure of X0 in P
n+1, then the morphism of

functors ϕ : Hilb(X̄0,P
n+1) → Def(X0) is strongly surjective. Therefore, as

in the proof of (29.8), if X0 is smoothable as an abstract scheme, then X̄0 is
smoothable in P

n+1. In that case there are smooth surfaces X in P
n+1 having

the same Hilbert polynomial as X̄0, and having smooth hyperplane sections
that are deformations of Y . We will show that this is not possible.

First we compute the arithmetic genus pa(X̄0). By taking cohomology of
the sequence

0→ OX̄0
(−1)→ OX̄0

→ OY → 0

and its twists and summing, we find for the Euler characteristics that

χ(OX̄0
(m)) = χ(OX̄0

) +
m∑

i=1

χ(OY (i)).

On the other hand, for m large, χ(OX̄0
(m)) = h0(OX̄0

(m)), and this, because
X̄0 is a cone, is simply
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χ(OX̄0
(m)) =

m∑

i=0

h0(OY (i)).

Since h1(OY (i)) = 0 for i > 0, by comparing these two equalities we find
that χ(OX̄0

) = 1, and hence pa(X̄0) = 0. Therefore also pa(X) = 0, since the
arithmetic genus is constant in a flat family.

Now consider the hyperplane section H of X, which is a deformation of
Y in P

n. Its normal bundle is OH(1), which has degree d. By the adjunction
formula, 2g−2 = H ·(H+K), where K is the canonical divisor on X. It follows
that H.K = 2g− 2−d is negative. In particular, no multiple of K is effective,
and we obtain the second plurigenus P2 = 0. By Castelnuovo’s criterion [57,
V, 6.2] therefore, X is a rational surface. Now H is a curve of genus g on X
with self-intersection H2 = d > 4g + 5 if g = 1, and d > 4g + 4 if g ≥ 2. This
contradicts a theorem of Hartshorne [54], and thus completes the proof.

Remark 29.12.1. By a similar method, Pinkham studies the cone over a set
of points in general position in P

n, and shows that there are bundles of lines
through a point in P

n+1 that form a nonsmoothable embedded singular curve.
His first example is a union of 13 general lines through a point in P

7.

As another application of our smoothing theorems, we study d-gonal curves
of genus g and the corresponding subsets of the moduli space. A nonsingular
curve C is called d-gonal if it admits a base-point-free linear system g1

d of
dimension 1 and degree d (27.2.1). This corresponds to a morphism of C to
P

1 of degree d. Given a curve C, it is always d-gonal for sufficiently large d,
but those that are d-gonal for smaller d are special in the variety of moduli.
Thus we showed (27.3) that a general curve of genus g > 2d−2 does not have
a g1

d, while it is known that for g ≤ 2d − 2, every curve of genus g has one.
In showing that the variety of moduli M3 is irreducible (Ex. 27.2) we saw
that the hyperelliptic curves of genus 3 are in the closure of the set of trigonal
curves, by reason of counting dimensions. A similar argument works forM4,
since a nonhyperelliptic curve of genus 4 is also trigonal. We will show now
that for any genus, the set of d-gonal curves is in the closure of the set of
(d + 1)-gonal curves. The first nontrivial case is genus 5, where the general
curve is not trigonal, so counting dimensions is not sufficient to show that
hyperelliptic curves are limits of trigonal curves.

Theorem 29.13. If C0 is a d-gonal curve of genus g, then there exists a
family X/T of projective nonsingular curves over a nonsingular curve T , and
a point 0 ∈ T whose fiber X0 is C0, such that for all p ∈ T , p �= 0, the fiber
Xp is (d+ 1)-gonal.

Proof. Let π0 : C0 → P
1 be the map of degree d determined by the g1

d

on C0. Let L be another copy of P
1, mapping isomorphically to P

1, and let
X0 = C0 ∪ L, meeting at a single point P . Then X0 is a projective curve of



29. Smoothing Singularities 213

(arithmetic) genus g, with a projection to P
1 of degree d + 1. Our goal is to

smooth X0 along with the projection π : X0 → P
1.

Choose an embedding i : X0 ↪→ P
n such that H1(OX0(1)) = 0, and

consider the resulting diagonal map X0 → P
1 × P

n. We will smooth X0 as
an embedded subscheme of Z = P

1 × P
n. For this purpose we consider the

associated sequence of tangent and normal sheaves

0→ TX0 → TZ |X0 → NX0 → T 1
P → 0.

Here we write T 1
P as a module, since the sheaf T 1

X0
is concentrated at its unique

singular point P . We wish to show that H1(NX0) = 0 and H0(NX0)→ T 1
P →

0 is surjective. Then, by (29.8), X0 will be smoothable in Z and a general
path in the Hilbert scheme will smooth the singularity at P .

Since Z is a direct product, TZ = p∗1TP1 ⊕ p∗2TPn , where p1, p2 are the
projections. Note that p∗2TPn |X0 is just i∗TPn . Since we assumedH1(OX0(1)) =
0, it follows from the usual Euler sequence that H1(i∗TPn) = 0. On the other
hand, the sequence of T i-sheaves for the map π : X0 → P

1 gives

0→ TX0 → π∗TP1 → T 1
X/P1 → T 1

X → 0.

These last two T 1-modules are concentrated at points, so H1(TX0) →
H1(π∗TP1) is surjective. It follows that H1(NX0) = 0 and H0(NX0) → T 1

P

is surjective from the sequence above.
Thus the Hilbert scheme is smooth, and by (29.8) smooths the singularity

at P . Taking an open set of a nonsingular curve T passing through that point
of the Hilbert scheme, we obtain a flat family of projective curves X/T whose
fiber at 0 ∈ T is X0 and whose general fiber Xt is a nonsingular curve of the
same genus g, whose first projection p1 : Xt → P

1 gives a g1
d+1 on the curve.

Note also that since the miniversal deformation space of a node, defined by
xy − t = 0, has smooth total family, it follows also that the total space X of
our family is nonsingular.

Now consider the special fiber X0 = C0 ∪ L ⊆ X. Being a fiber of the
projection to T , its self-intersection is zero; in fact, its normal bundle NX0/X

is trivial. But then NL/X = NX0/X |L(−P ), so L2 = −1. The curve L is iso-
morphic to P

1, so it is an exceptional curve of the first kind on the nonsingular
surface X, and we can blow it down [57, V, 5.7], getting another nonsingular
surface X ′/T . This is still a flat family, since it is irreducible and T is a non-
singular curve, and now the special fiber X ′

0 is just C0. This is the required
family.

Corollary 29.14. There exist d-gonal curves of genus g for all d ≥ 2.

Proof. Indeed, since there exist hyperelliptic curves of every genus (for
example curves of bidegree (2, g + 1) on nonsingular quadric surface in P

3),
the theorem provides us with d-gonal curves for every d ≥ 2.
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References for this section. My main references for this section have been
Schlessinger’s work on rigid singularities [147], Pinkham’s thesis [135], Artin’s
lecture notes explaining these results [8], and my paper with Hirschowitz
[65]. Further references mentioned along the way are [117], [118], [144], [60],
and [23]. See also [56] for some other criteria for smoothing singularities, not
using deformation theory. The definition and properties of formally smooth-
able schemes are new. With them we could justify a method already used
in [135] and [65]. The book of Stevens [160] has many more computations
of smoothable and nonsmoothable cones over curves and over sets of points
in P

n.
As for the last result on d-gonal curves, many experts assured me that

this was “obvious” or “well known” or “follows from the general theory,” but
since I could not understand their arguments, I gave a proof here using only
the techniques of this book.

Exercises.

29.1.

(a) Generalize the proof of (29.10.2) to show that any reduced connected curve Y
in P

n having pa(Y ) = 1 or 2 is smoothable.
(b) Show that the corresponding statement is false for pa(Y ) ≥ 3.

29.2. Show that an integral curve Y of degree d > 2pa − 2 in P
3 is smoothable in

P
3. This is weaker but much more elementary than Ein’s theorem (29.9.4).

29.3. (cf. [65, 6.1.2])

(a) Let C be a nonsingular plane quartic curve, and let D be a nonsingular rational
curve of degree d in P

3 meeting C, transversal to the plane of C, in a single
point P . Let Y = C ∪D. Show that Y is not smoothable in P

3, even though its
only singularity is a node, and its degree d+4 is much larger than its arithmetic
genus pa = 3. Hint: Use the fact that D is transversal to the plane of C to argue
that H1(NY ) = 0. Then show that the Hilbert scheme near Y is irreducible and
non singular, and that by reason of dimension, every nearby curve is again of
the form Y ′ = C′ ∪D′ for nearby curves C′ and D′.

(b) Show, however, that the union of a plane quartic curve with two skew lines, each
meeting it at one point, is smoothable in P

3 [65, 4.3.1].

29.4. Smoothing cones over curves.

(a) Let X be a nonsingular surface in P
n+1. Assume that X contains the point P =

(1, 0, . . . , 0), and that the hyperplane section Y defined by x0 = 0 is projectively
normal in P

n. For any t �= 0 consider the automorphism of P
n+1 that sends the

point (1, a1, . . . , an+1) to (t, a1, . . . , an+1), and let Xt be the image of X. Show
that the limit as t approaches zero is the projective cone X0 over Y , and that
this is a flat family smoothing X0.

(b) For any r = 0, 1, . . . , 6, let X be the image in P
9−r of P

2 by the linear system of
cubic curves passing through r general fixed points of P

2. This is the Del Pezzo
surface of degre 9 − r. Using the family of (a), these smooth the cone over an
elliptic curve Y of degree 9 − r in P

8−r. Thus for curves of genus 1, (29.12) is
sharp.
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(c) For r = 0, 1, . . . , 7, let X be the image in P
n+1 of P

2 given by the linear system
of quartic curves through 2P0, P1, . . . , Pr, where Pi are general points of P

2, and
n+1 = 11− r. For r = 7 this is the Castelnuovo surface of degree 5 in P

4. Again
using (a) show that these surfaces provide smoothing of the cone over a curve
of genus 2 and degree 12 − r in P

10−r for r = 0, 1, . . . , 7. Thus (29.12) is sharp
for g = 2.

(d) Show also that (29.12) is sharp for g = 3 using embeddings of P
2 by quartic

curves through r = 0, 1, . . . , 10 general points. For r = 10, this is the Bordiga
surface in P

4.

29.5. In (29.13) it would be nice to know that a d-gonal curve is a limit of (d+ 1)-
gonal curves that are not also d-gonal. And in (29.17) it would be nice to know that
there exist d-gonal curves that are not (d− 1)-gonal.

(a) Show that if a curve C is simultaneously d-gonal and (d + 1)-gonal for some
d ≥ 2, then there is a birational morphism from C to a curve C′ of bidegree
(d, d+ 1) in Q = P

1 × P
1, and therefore g ≤ d(d− 1).

(b) Conclude that for every g ≥ 3, the hyperelliptic curves are limits of trigonal
nonhyperelliptic curves, and there exist trigonal curves that are not hyperelliptic.

29.6. Cones over the rational quartic curves in P
4. These were studied

by Pinkham [135], and such cones provide examples of embedded and abstract
obstructed deformations of Cohen–Macaulay schemes in codimension 3.

Following the notation of (29.11), let Y be a rational normal curve of degree 4
in P

4, let X be the affine cone over Y in A
5, and let X̄ be its projective closure

in P
5.

(a) Show that the hypotheses of (29.11) are satisfied, and so the restriction map of
functors Hilb(X̄,P5) → Def(X) is strongly surjective.

(b) Use the analysis of the proof of (29.11) to compute that h0(NX̄/P5) = 30 and

dimT 1
X = 4, so that if R is the complete local ring pro-representing the functor

Def(X), and S is the completion of the local ring of the Hilbert scheme at the
point corresponding to X̄, then S is isomorphic to a power series ring in 26
variables over R (Ex. 15.7).

(c) One knows [57, V, 2.19.1, 2.19.2], [162] that any integral surface of degree 4 in
P

5 is one of the following:

(i) a rational scroll with e = 0 embedded by C0 + 2f ,
(ii) a rational scroll with e = 2 embedded by C0 + 3f ,
(iii) the Veronese surface: P

2 embedded by O(2),
(iv) a cone over a rational quartic curve in P

4.

Show that any two in the same family differ by an automorphism of P
5, and

compute the dimensions of the families: 29, 28, 27, and 26 respectively. Further-
more, all four types have the same Hilbert polynomial, and are ACM schemes
in P

5.
(d) To see the structure of the Hilbert scheme of these integral surfaces in P

5, show
that:

(1) The family (ii) is in the closure of the family (i): cf. (Ex. 2.3).
(2) Using the stretching method of (Ex. 29.4) show that the family (iv) is con-

tained in the closures of each of the families (i), (ii), and (iii).
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(3) The closures of families (i) and (iii) form two distinct irreducible components
of the Hilbert scheme.

Thus the Hilbert scheme has two irreducible components of dimensions 29 and
27, meeting along a subvariety of dimension 26, and having embedding dimension
30 along the intersection.

(e) Conclude finally that the formal deformation space SpecR of the functor of
abstract deformations of the affine cone X has two irreducible components of
dimensions 3 and 1 meeting at a point, and has embedding dimension 4. Note
that since Y is projectively normal, X is a Cohen–Macaulay scheme.

(f) These calculations also show that X is smoothable in two essentially different
ways.

29.7. Nonlicci schemes. Recall (Ex. 9.4) that a scheme is called licci if it can
be linked in a finite number of steps to a complete intersection.

(a) Using (Ex. 9.4), show that the local ring of the vertex of the cone over a rational
quartic curve in P

4 (Ex. 29.6) is not licci.
(b) A subscheme of P

n
k is called (globally) licci if it can be linked by complete

intersection schemes in a finite number of steps to a complete intersection in P
n

(Ex. 8.4). Show that as a consequence of (a) above, the rational quartic curve
in P

4 is not licci.
(c) Let Y be a set of four points in general position in P

3. By an argument analogous
to (Ex. 29.6) show that Y is not licci.

29.8. Show that the example of (29.11.2) still works if we allow H1(OY ) to be
nonzero. Show also that in a global family of projective deformations of the projective
cone X̄0, the nearby fibers are also cones over deformations of Y .
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Séminaire Bourbaki 1957–1962], Secr. Math. 11, rue Pierre Curie, Paris (1962).

46. Grothendieck, A., Le groupe de Brauer, I, Séminaire Bourbaki 290 (1964/65).
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Math. IHES 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967).
49. Gruson, L., and Peskine, C., Genre des courbes de l’espace projectif, Springer

LNM 687, 1977, 31–59.
50. Gruson, L., and Peskine, C., Genre des courbes de l’espace projectif, II, Ann.

Sci. ENS (4) 15 (1981), 401–418.
51. Harris, J. (with the collaboration of D. Eisenbud), Curves in projective space,

Sem. Math. Sup., Univ. Montreal (1982).
52. Harris, J., and Morrison, I., Moduli of Curves, Springer, 1998.
53. Hartshorne, R., Connectedness of the Hilbert scheme, Publ. Math. IHES 29

(1966), 261–304.
54. Hartshorne, R., Curves with high self-intersection on algebraic surfaces, Publ.

Math. I.H.E.S. 36 (1969), 111–125.
55. Hartshorne, R., Ample subvarieties of algebraic varieties, Springer Lecture

Notes in Math. 156, 1970.
56. Hartshorne, R., Topological conditions for smoothing algebraic singularities,

Topology 13 (1974), 241–253.
57. Hartshorne, R., Algebraic Geometry, Springer, 1977.
58. Hartshorne, R., Stable vector bundles of rank 2 on P

3, Math. Ann. 238 (1978),
229–280.

59. Hartshorne, R., On the classification of algebraic space curves, in Vector
Bundles and Differential Equations (Nice 1979), Birkhäuser, Boston (1980),
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49 (1897), 631–663.

143. Rohn, K., and Berzolari, L., Algebraische Raumkurven und abwickelbare
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of line bundles. See Situation B
of linked scheme, 77
of morphism, 159
of nodal elliptic curve, 175
of nonaffine schemes, 41
of nonsingular affine scheme, 30, 50
of scheme with line bundle, 83
of singularity. See Situation D
of subscheme. See Situation A
of surfaces in P

3, 133
of vector bundles. See Situation C
trivial, 12, 30

degree of vector bundle, 189
Deligne, Pierre, 3, 137, 148, 177, 178,

187
Deligne–Mumford stack, 186
Del Pezzo surface, 214
depth, 39, 58
derived category, 21
descent theory, 154, 186
determinantal scheme, 58
d-gonal curve, 212
differentials

module of, 19
sheaf of, 27

dimension
of fine moduli, 154, 161
of Hilbert scheme, 87
of local ring, 87

divisor
associated to line bundle, 17, 51
canonical, 161
numerically effective, 161

double line, 43
dual modules, 57
dual numbers, 6, 9
d-uple embedding, 44, 146

effective formal scheme, 140, 142

Ein, Lawrence, 90, 214
Eisenbud, David, 68, 77
Ekedahl, T., 148
elementary biliaison, 69
Ellingsrud, Geir, 62, 65, 68
elliptic curves, 3, 126, 169

affine, 34
Jacobian of, 16
modular family, 171
moduli, 167
pointed, 125
trivial family of, 34
vector bundles on, 17

embedded point, 9
embedded versus abstract deformations,

131
endomorphisms, 15
Enriques surface, 141
equisingular, 100, 106
equivalence relation, 185
equivalent

deformations, 14, 35
extensions, 36, 78
up to power series rings, 127

étale base extension, 178
étale covering, 142, 147
étale topology, 154, 171, 185
Euler sequence, 41, 132
exceptional curve, 48, 83
extension

of deformation, 45, 46, 53, 78
of ring by module, 36
of sheaves, small, 111
trivial, 36

extremal curves, 95

false ruled surface, 148
family

bounded, 156, 162, 189
complete, 100, 156, 162, 188, 193
fiberwise trivial, 153, 163, 165, 169,

172, 176, 187, 198
formal, 107
isotrivial, 167, 176
limit of, 8
locally isotrivial, 167
locally trivial, 166
miniversal, 2, 100, 102, 108, 120
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section of, 169
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smooth, 110
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versal, 2, 100, 108, 128

Fano, G., 136
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fibered product, 115, 117
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forgetful functor, 123
formal deformations
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of closed subscheme, 118
of vector bundle, 128

formal family, 107, 141
formally smoothable, 3, 200, 202
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smoothable scheme is, 202

formal moduli, 99
formal scheme, 139, 140
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Frobenius morphism, 161
Fulton, William, 177, 178
functor
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Picard, 119, 155
pro-representable, 106, 107, 109
Quot, 129, 158
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nonreduced, 91, 95
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Hurwitz scheme, 177
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202
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Jacobian

criterion, 26
matrix, 26
of elliptic curves, 16
variety, 16, 88

jump phenomena, 100, 152, 155, 163
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prevents coarse moduli, 100, 152
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Kerner, H., 127
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Lang, W. E., 148
Langton, S. G., 193
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Lefschetz pencil, 137
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licci scheme, 78, 216
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lifting

from char p, 144, 145
of morphism, 27, 28

limit
of affine elliptic curves, 39
of flat family, 8
stable curve as, 188
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associated divisor of, 17, 51
deformations of. See Situation B
obstructed, 51, 134
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double, 43
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in quartic surface, 51, 53

linkage, 69, 73, 93, 95–97, 216
of deformations, 77, 78, 127
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and T i functors, 32
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locally formally smoothable, 203
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analytic isomorphism of, 34
regular, 27
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Maruyama, M., 197
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miniversal family, 2, 100, 108, 109, 110,

120
Miró–Roig, R. M., 76
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modular family, 3, 142, 149, 171
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curves of genus ≥ 2, 178, 208
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no smallest, 173
vector bundles, 191, 199
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Cohen–Macaulay, 57
dual, 57
of differentials, 19
reflexive, 58
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coarse, 3, 151, 164, 178
completion of, 174, 181
curves of genus 0, 151
curves of genus ≥ 2, 177
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fine, 3, 152, 185
formal, 99
functor, 178
global, 3, 149
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nonreduced, 153
nonseparated, 177, 193, 194ff
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pointed curves, 166, 168, 169
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Nagata, M., 196
Narasimhan, M. S., 197
natural, use of word, 15, 46
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Noether’s theorem, 135, 138
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nonliftable scheme, 146
nonreduced Hilbert scheme, 91, 95
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194ff
nonsingular variety, 26, 132

and T i functors, 30
first-order deformations, 38
formal deformations, 120
higher-order deformations, 82
plane curves, 137
surface in P

3, 132
nonsmoothable

curve, 43, 206, 207, 214
scheme, 200, 211

nonspecial curve, 9, 50
normal bundle, 7, 12

computation of sections, 93
normal module, 23
normal sheaf, 12, 89
normalized vector bundle, 17
null-correlation bundle, 18, 56
numerically effective, 161
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of curves in P

3, 92
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4, 71
of curve on surface, 51
of line bundle, 51, 53, 134
of nonsingular 3-fold, 94
of zero-dimensional subscheme, 41,

51, 71
obstruction theory, 2, 6, 45, 47

and T i functors, 78, 81
of abstract schemes, 78, 81
of Cohen–Macaulay subscheme, 62
of coherent sheaf, 53, 55, 57
of complete intersection, 75
of functor, 110, 118, 154
of Hilbert-flag scheme, 52
of invertible sheaf, 49, 51
of local ring, 85–87
of nonsingular affine scheme, 50
of Quot functor, 55
of subscheme, 47, 51

Oh, K., 90
Oort, Frans, 148
open problems, 90, 148, 201
orbit space, 178
ordinary double point, 40

Perrin, Daniel, 91, 95
Peskine, Christian, 62, 68, 88, 95
Pfaffian, 76
Picard group, 92, 135, 138, 162
Picard scheme, 3, 149, 158, 162
Piene, Ragni, 68
pinching a curve, 207
Pinkham, Henry, 208, 211, 212, 214, 215
plane curves, 50, 70
plane curve singularities, 99, 100

cusp, 41, 105, 126
minimal family, 103
node, 25, 33, 40, 101, 123
not pro-representable, 109, 121
ordinary fourfold, 100, 106
ordinary fivefold, 106
tacnode, 105, 106

pointed curve, 166, 168
pointed elliptic curves, 125
polarized varieties, 141
postulation function, 69

principal homogeneous space. See torsor
principal parts, sheaf of, 84
projective general linear group, 179
projectively normal variety, 40
pro-representable functor, 2, 99, 107,

112, 118
and automorphisms, 122, 123
Hilb is, 118
of stable curves, 184
Pic is, 119
projective scheme, 122
Schlessinger’s criterion, 99

pro-representable hull, 108
pseudotorsor, 46, 47
punctual scheme, 29, 34, 51. See also

zero-dimensional schemes
Purdue conference, 176

quadric surface, 7, 50, 68
quartic surface, 51, 96, 133–136, 138,

140
lines on, 53, 96, 138
obstructed line bundle on, 51, 53, 134
obstructed line on, 51, 53

Quillen, Daniel, 25
Quot functor, 54, 56, 129, 158
quotient by equivalence relation, 180,

185
Quot scheme, 191

rank of vector bundle, 189
Rao, A. P., 90
Rao module, 69, 95, 96
rational curve, 3, 215
Raynaud, Michel, 148
reflexive module, 58
regularity, 70
regular local ring, 27, 30, 31

and T i functors, 31
regular sequence, 73
relative local complete intersection, 33
representable functor, 152, 156
resolution

linear, 91
of Cohen–Macaulay subscheme, 58,

63
of complete intersection, 74
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of curves, 90
of Gorenstein subscheme, 76
of singularities, 163

rigid scheme, 38, 83, 127, 163, 199, 201
affine cone is, 40
affine nonsingular variety is, 38
cones, 210
double line is, 44
is not smoothable, 204
nonreduced, 44
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n is, 38

union of planes is, 41
Rim, D. S., 87
ring

Cohen–Macaulay, 58
complete intersection, 33
Gorenstein, 75
of dual numbers, 6
regular local, 26, 30, 31

Rohn, K., 137
ruled surface, 165

Schaps, Mary, 60, 62, 68, 206
scheme

punctual, 29
rigid, 38, 201
with H1(OX) = 0, 16

Schlessinger, Michael, 2, 18, 25, 34, 40,
68, 82, 105, 111, 117, 214

Schlessinger’s criterion, 2, 111, 113, 118
Schröer, S., 148
scroll, 215
Segre embedding, 41
semicontinuity, 106, 208
semi-exact functor, 32
semirigid curve, 90
semistable vector bundle, 189, 198
separated family, 156
Sernesi, Edoardo, 73, 96, 117, 119
Serre, Jean-Pierre, 2, 16, 77, 146
Seshadri, C. S., 197
sheaf

automorphisms of, 14
deformation of, 14
for Zariski topology, 154, 171, 176
of principal parts, 84

sheafification, 167
simple vector bundle, 56, 129, 162

singularities
analytically isomorphic, 34
equisingular, 100
generic, 211
isolated, 103
nonsmoothable, 210
not local complete intersection, 77
of plane curves, 100, 103
resolution of, 163
rigid, 210
smoothable, 199

Situation A, 1. See also Hilbert scheme
affine case, 11, 12
Cohen–Macaulay, 60, 65
first-order, 11, 13
formal, 99, 118, 140
global case, 12, 149, 156
Gorenstein, 76
higher-order, 46, 47
local complete intersection, 74, 75
obstructed, 92, 96

Situation B, 1
first-order, 13
formal, 99, 119, 141
global, 149, 158
higher-order, 49, 51
obstructed, 134
Picard scheme, 158

Situation C, 1. See also vector bundles
first-order, 13, 14
for coherent sheaves, 57
for locally free sheaves, 53
for sheaves of hd ≤ 1, 55
formal, 99, 128, 129, 141
global moduli, 191
higher-order, 53, 55

Situation D, 1, 19, 35
first-order, 38, 82
for nonsingular variety, 38, 82
formal, 99, 120, 122, 123, 125, 141
global, 164, 167, 177
higher-order, 78, 81
obstructed, 94, 127
obstructions, 78, 80

small extension, 111
smooth morphisms, 26, 30, 31

and T i functors, 31
infinitesimal lifting property, 34
of functors, 108
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smoothable
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curves in P

n, 205, 206
formally, 3, 200
hypersurface is, 200
rigid scheme is not, 204
scheme, 39, 200
singularities, 199

space curves, 88
speciality function, 69
spectral sequence, 42, 82
stable curves, 177, 181, 184, 188

limit of nonsingular, 188, 206
stable vector bundles, 3, 162, 188, 193
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2, 199

stack, 3, 142, 149, 171, 176, 177, 184ff
Stevens, J., 214
strongly surjective, 108, 110, 111, 204,

208
subscheme. See also Hilbert scheme

Cohen–Macaulay, 2
deformation of, 11
Gorenstein, 2
locally complete intersection, 2
universal, 5

surface, 83
abelian, 84, 123, 141, 143
Bordiga, 215
Castelnuovo, 215
cubic, 43, 52, 68, 70, 83, 92
Del Pezzo, 214
Enriques, 141
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3, 132, 137, 138, 143
K3, 133, 141, 148
of general type, 141
quadric in P

3, 123, 131, 132, 143
quartic, 133, 138
rational, 121, 123, 130, 212, 215
ruled, 141, 148, 165

Szpiro, Lucien, 62, 68
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33
and obstructions, 78
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and smooth morphisms, 31
as Ext, 25

base change of, 26
construction of, 19
exact sequence of, 21, 34
examples of, 25
global construction of, 26
localization of, 26
notation of, 25
obstructed, 51
of a polynomial ring, 23
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of analytically isomorphic local rings,

34
of nonsingular affine scheme, 30
of quotient ring, 24, 34
sheaves, 25, 34, 80, 82
tacnode, 105

tangent bundle
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of cone, 41

tangent module, 23
tangent sheaf, 13, 38, 183

of blowing-up, 83, 94
tangent space of functor, 111, 117
tangent theory of functor, 118
tautological family, 7, 151, 164
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thick point, 25, 33
torsor, 15, 29, 46, 47, 49, 51, 54, 78
tricanonical embedding, 178
trigonal curve, 77, 180, 212, 215
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family, 153

twisted cubic curves, 9, 69
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of curves, 8, 42, 68
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4, 41
unitary representations, 197
universal

family, 7, 152
subscheme, 5

unobstructed
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functor, 110

unstable vector bundle, 189
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of rank 2, 17
on curve of genus 3, 194
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rank, 189
semistable, 189
simple, 56, 129, 162, 189
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very general, 135
Vistoli, A., 184

Wahl, Jonathan, 100
Watanabe, J., 76, 77
Weyr, E., 91
Witt vectors, 110, 144

Yoneda’s interpretation of Ext, 14

Zariski, Oscar, 105
Zariski tangent space, 6, 13, 92, 102,
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